Работников Михаил Алексеевич

АВТОМАТИЗИРОВАННОЕ УПРАВЛЕНИЕ С ПРОГНОЗИРОВАНИЕМ НЕПРЕРЫВНЫМИ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ НА ОСНОВЕ ТЕКУЩЕЙ ИДЕНТИФИКАЦИИ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ОБЪЕКТА

2.3.3. Автоматизация и управление технологическими процессами и производствами

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Диссертационная работа выполнена в Федеральном государственном автономном образовательном учреждении высшего образования «Пермский национальный исследовательский политехнический университет».

Научный руководитель: Шумихин Александр Георгиевич

доктор технических наук, профессор

Официальные оппоненты: Семенов Анатолий Дмитриевич

доктор технических наук, доцент, ФГБОУ ВО «Пензенский государственный университет», кафедра «Информационно-измерительная техника и метрология», профессор

Муртазин Тимур Мансурович

кандидат технических наук, доцент, ФГБОУ ВО «Уфимский государственный нефтяной технический университет», кафедра «Автоматизация, телекоммуникация и метрология», доцент

Ведущая организация: Федеральное государственное бюджетное

образовательное учреждение высшего образования «Российский химико-технологический университет

имени Д.И. Менделеева»

Защита состоится «30» января 2026 года в 14:00 на заседании диссертационного совета Пермского национального исследовательского политехнического университета Д ПНИПУ.05.14, по адресу: 614990, г. Пермь, Комсомольский пр. 29, ауд. 345.

С диссертацией можно ознакомиться в библиотеке и на сайте $\Phi\Gamma$ AOУ ВО «Пермский национальный исследовательский политехнический университет» (www.pstu.ru).

Автореферат разослан «4» декабря 2025 г.

Ученый секретарь диссертационного совета Д ПНИПУ.05.14, доктор технических наук, доцент

Фрейман Владимир Исаакович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Современные подходы в области автоматизации промышленных технологических процессов и производств отраслей химической промышленности предполагают в контуре управляющей системы наличие алгоритмических решений, формирующих оптимальный сценарий ведения технологического режима с учетом текущего состояния управляемого объекта, регистрируемых возмущающих воздействий и внешних технологических и экономических факторов. Отличительный принцип решений подобного типа, относящий данный класс систем к верхнеуровневому слою в иерархии промышленной сети информационного обмена, заключается в сборе и комплексном анализе данных, регистрируемых по существующим каналам передачи в границах автоматизируемого процесса. Одной из разновидностей таких решений являются системы усовершенствованного управления (СУУТП), получившие широкое применение для множества управляемых промышленных технологических процессов непрерывного типа.

В основе класса используемых в СУУТП алгоритмов заложен принцип многокритериального комбинированного управления: компенсации внешних возмущающих воздействий и удержания контролируемых переменных в допустимых границах состояния по принципу обратной связи. Расчет вектора управляющих сигналов осуществляется на основе прогнозируемого состояния управляемого технологического объекта, определяемого с использованием его многомерной математической модели. Такой подход позволяет вести непрерывную количественную оценку влияния управляющих переменных и регистрируемых возмущающих воздействий системы на контролируемые переменные процесса, обеспечивая возможность определения оптимального управляющего сигнала, удовлетворяющего условию устойчивого функционирования управляемого процесса в допустимых границах состояний при минимальном отклонении относительно заданной стационарной точки.

Поскольку исходными данными ДЛЯ расчета выходного сигнала управляющего устройства являются показания имитационной модели управляемого объекта, от степени соответствия прогнозируемого изменения переменных реальному поведению технологического процесса напрямую зависит качество автоматического регулирования и устойчивость замкнутого контура управляющей системы. Исходя из этого вопросу обеспечения максимальной точности моделей, задействованных в алгоритмах функционирующих систем управления уделяется особое внимание.

Классическим способом построение математической модели управляемого технологического процесса является проведение активного эксперимента со снятием динамической характеристик исследуемых каналов передачи и последующей обработкой результатов тестирования. Подобный подход обладает высокой трудоемкостью и не всегда применим на реальном процессе ввиду требований к поведению технологического режима близкому к стационарному состоянию, однако позволяет наилучшим образом оценить динамические свойства

технологического процесса и является основным решением для определения первичной конфигурации модели процесса при техническом проектировании.

В условиях непрерывного функционирования реальных химико-технологических систем с целью поддержания заданных показателей качества автоматического регулирования, сохранения свойств робастности и устойчивости управляющей системы возникает задача параметрической и структурой адаптации используемой математической модели процесса. Для этих случаев применяются инструменты обработки результатов пассивного эксперимента — исторических данных функционирования объекта по задействованным переменным системы. Применяемые для указанной задачи алгоритмические решения и методологические инструменты должны обеспечивать возможность определения оптимальной параметрической конфигурации модели управляемого процесса, обеспечивающий минимальную ошибку выходных сигналов от соответствующих реальных значений контролируемых переменных процесса.

Степень разработанности темы исследования. В области теории автоматического управления вопросами параметрической структурной И моделирования многокритериального управления идентификации, И технологическими процессами на основе их многосвязной математической модели посвящены работы В. Я. Ротача, В. А. Лотоцкого, Р. Eykhoff, R. Izerman, L. Ljung, Н. Н. Бахтадзе и многих других. В работах Н. Е. Баранова рассматриваются вопросы конструирования моделей, прогнозирующих выходную реакцию объекта в условиях недостатка априорных данных об объекте. Проблемам адаптивного управления в условиях дрейфа характеристик технологического объекта и вопросам применения инструментов текущей настройки замкнутых многосвязных систем в задачах управления непрерывными технологическими процессами работы Перельмана. работах Торгашова посвящены И. И. В Ю. продемонстрирована возможность практического применения моделей в условиях неопределенности в периметре систем многокритериального управления для нелинейных технологических объектов. А. А. Черешко рассматривает методы управления с прогнозирующей моделью с использованием идентификационных алгоритмов, ассоциативных позволяющих получать высокоточные модели для широкого класса нелинейных процессов.

При этом в литературных источниках отсутствует строгое описание методов и алгоритмов многокритериального управления упреждающего типа воздействия с изменяемой параметрической конфигурацией прогнозирующей модели управляемого объекта. Не разработаны методологические подходы применения алгоритмов адаптации динамических моделей, используемых в замкнутом контуре управляющих систем.

Объектом исследования являются системы автоматизированного управления непрерывными многосвязными технологическими объектами.

Предметом исследования являются методы и алгоритмическое обеспечение многокритериального управления с прогнозирующей моделью непрерывными технологическими процессами и производствами.

Целью диссертационной работы является повышение эффективности и качества автоматического регулирования производственными технологическими процессами за счет разработки и внедрения алгоритмов многокритериального управления с адаптируемой прогнозирующей моделью управляемого объекта.

В соответствии с поставленной целью в диссертационном исследовании решаются следующие задачи:

- 1. На основе анализа существующих решений в области многокритериального управления с прогнозирующей моделью сформулировать задачу повышения точности математического моделирования поведения управляемых технологических объектов;
- 2. Разработать алгоритм управления с адаптируемой прогнозирующей моделью;
- 3. Определить особенности практической реализации метода адаптации динамической модели в контуре управляющей системы и сформулировать методические указания к его использованию.
- 4. Апробировать адекватность и корректность методики параметрической адаптации многомерной динамической модели по результатам вычислительных экспериментов симуляции поведения управляемого технологического объекта;
- 5. Реализовать и внедрить функциональное решение, обеспечивающее параметрическую адаптацию прогнозирующей модели состояния управляемого объекта в замкнутом контуре системы многокритериального управления реальным технологическим процессом.

Положения, выносимые на защиту, обладающие научной новизной:

- 1. Алгоритм многокритериального управления на основе прогнозирующей модели состояния управляемого объекта, отличающийся переменной параметрической конфигурацией используемой модели, что позволяет улучшить показатели качества работы автоматизированной системы управления (п. 5 «Научные основы, алгоритмическое обеспечение и методы анализа и синтеза систем автоматизированного управления технологическими объектами» паспорта специальности 2.3.3).
- 2. Метод идентификации управляемого объекта, технологического отличающийся возможностью построения многомерной динамической модели по данным функционирования управляющей системы, что позволяет решить задачу актуальных непрерывного определения динамических характеристик управляемого объекта для нелинейных технологических процессов (п. 6 «Научные построения интеллектуальных методы систем основы технологическими процессами и производствами» паспорта специальности 2.3.3).
- 3. Методика анализа целевой функции, формируемой для решения задач определения динамических характеристик нелинейных технологических систем, оригинальность которой заключается в алгоритме проводимого исследования поверхности целевой функции путем оценки распределения множества экстремальных точек относительно искомых параметров, что позволяет определить оптимальный метод численного решения для рассматриваемой задачи идентификации (п. 8 «Научные основы, модели и методы идентификации

производственных процессов, комплексов и интегрированных систем управления и их цифровых двойников» паспорта специальности 2.3.3).

Теоретическая значимость работы заключается в развитии алгоритмического обеспечения многокритериального управления на основе прогнозирующей модели процесса, методов идентификации многосвязных динамических объектов с использованием результатов пассивного эксперимента, методов исследования функций нескольких переменных в задачах численной оптимизации.

Практическая значимость работы заключается в возможности реализации разработанных методов и алгоритмов управления с адаптируемой прогнозирующей моделью для непрерывных технологических процессов и производств.

Формализованное описание алгоритма управления с прогнозирующей моделью позволило сократить время проектирования программного обеспечения класса СУУТП на 10-20% от общего времени разработки (акт внедрения ООО «Датана»).

Применение разработанного решения задачи адаптации динамической модели в замкнутом контуре управляющей системы массообменным процессом депропанизации установки компримирования и газоразделения производства олефинов позволила улучшить индекс воспроизводимости контролируемых показателей качества выпускаемой продукции: в 1.29 и 1.37 раз для содержания пропана кубовой фракции и для содержания бутана в очищенном пропане соответственно (акт внедрения ООО «ЗапСибНефтехим»).

Теоретическую и методологическую основу исследований составляют положения теории автоматического управления, теории вероятности и математической статистики, методы численной оптимизации, методы математического моделирования.

Достоверность результатов исследования определяется использованием современных методик в области автоматического управления и математического моделирования, успешной идентификации исследуемых объектов управления, соответствием теоретических результатов и практических данных. Достоверность положений и выводов диссертации подтверждена положительным результатом внедрения разработок на нефтегазохимическом предприятии с производством непрерывного типа.

Степень достоверности и апробация работы. Результаты диссертационной работы докладывались и обсуждались на научно-методических семинарах кафедры «Оборудование производств» химических Пермского автоматизация университета, национального исследовательского политехнического международной научно-практической конференции «Наука. Технологии. Инновации» (г. Петрозаводск, 2025), всероссийской научно-практической конференции с международным участием «Химия. Экология. Урбанистика» (г. Пермь, 2024, 2023, 2021, 2019), всероссийской научно-технической конференции «Автоматизированные системы управления и информационные технологии» (г. научно-практической международной Пермь, 2023, 2019), конференции

«Инновации. Интеллект. Культура» (г. Тобольск, 2021), международной научнотехнической конференции «Актуальные проблемы современной науки, техники и образования» (г. Магнитогорск, 2021), международной интернет-конференции молодых ученых, аспирантов и студентов «Инновационные технологии: теория, инструменты, практика» (г. Пермь, 2018).

Публикации. По теме диссертации опубликовано в двадцати печатных работах, из них шесть — в изданиях, входящих в Перечень рецензируемых научных изданий, в том числе две статьи индексированы в базе цитирования Russian Science Citation Index (RSCI), одна статья индексирована в международной базе цитирования Web of Science.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, заключения, списка литературы, включающего 119 наименований, 4 приложений. Работа изложена на 113 страницах, содержит 38 рисунков, 11 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность разработки методов многокритериального управления с адаптируемой прогнозирующей моделью для непрерывных технологических процессов, приведена степень разработанности темы исследования, сформулированы объект и предмет исследования, цель диссертационной работы, основные задачи исследования, теоретическая и практическая значимость исследования.

Первая глава посвящена анализу современных подходов в области многокритериального управления технологическими объектами с непрерывным характером процессов. Обзор существующих решений, включающих алгоритмы управления на основе прогнозирующих моделей, выявил необходимость развития методов управления, обеспечивающих решение задачи сохранения устойчивости и качества автоматического регулирования в условиях неопределенности.

Анализ работ, посвященных многокритериальному управлению, среди известных модификаций классического алгоритма управления с прогнозирующей моделью показал наиболее подходящим применение методов с использованием адаптивной динамической модели. Данный тип решений применим для широкого класса технологических процессов и не имеет ограничений при его практической реализации. При этом отсутствует строгое описания методики применения инструментов адаптации для функционирующего контура управления с прогнозирующей моделью, не отражены прикладные результаты применения алгоритмов адаптивного управления, включающие оценку характеристик качества регулирования выходных параметров процесса.

Для решения указанных проблем управления с прогнозирующей моделью в условиях неопределенности необходимо решить ряд следующих задач: разработать алгоритм управления с прогнозирующей моделью с непостоянной параметрической конфигурацией, сформулировать решение задачи актуализации параметрической конфигурации динамической модели управляемого объекта, определить особенности поставленной задачи в численном виде и сформировать

методические указания к ее решению, провести апробацию результатов исследования.

Вторая глава посвящена разработке алгоритма решения задачи управления с прогнозирующей моделью с непостоянной параметрической структурой.

В общем виде задача управления с прогнозирующей моделью заключается в определении оптимального управляющего воздействия $\mu_e(t)$, обеспечивающего минимальное отклонение прогнозируемого поведения объекта управления $y_R(t)$ от желаемого состояния $y_D(t)$ при регистрируемых возмущающих воздействиях $\lambda(t)$:

$$\min_{\mu(t) \in \mu_D} \sum_{i=1}^{p} w_i^2 \left(y_{R_i} \left(\mu(t), \lambda(t) \right) - y_{D_i}(t) \right)^T \left(y_{R_i} \left(\mu(t), \lambda(t) \right) - y_{D_i}(t) \right)^T \left(y_{R_i} \left(\mu(t), \lambda(t) \right) \right) - y_{D_i}(t) \right) \rightarrow \mu_e(t), \tag{1}$$

где p — количество управляемых переменных, w — набор весовых коэффициентов задачи многокритериального управления, μ_D — границы допустимого управляющего воздействия.

Предлагаемая структура для поставленной задачи (1) включается в себя регулятор упреждающего воздействия, функционирующий по обратной связи от показаний прогнозирующей модели, содержащий вспомогательный блок текущей идентификации параметрической (рис. 1). Определение оптимальной параметрической конфигурации z'(t)осуществляется ПО окончанию управляющего цикла на основании текущего состояния z(t) при выполнении условия превышения накопительной ошибки прогнозирующей модели $\varepsilon(t)$ порогового значения ε_0 по исторических данным функционирования системы согласно критерию максимального соответствия устанавливаемых реальному поведению управляемого технологического объекта.

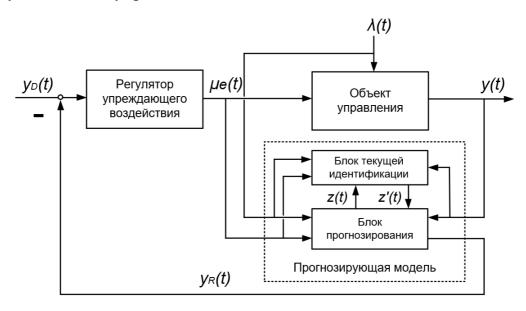


Рисунок 1 — Система управления на основе прогнозирующей модели с непостоянной параметрической конфигурацией

В общем виде алгоритм системы управления с адаптируемой прогнозирующей моделью имеет следующую последовательность действий:

- 1. Считывание информации о текущем состоянии управляемого объекта $(y(t); \lambda(t))$ и конфигурации управляющей системы $(y_D(t); \mu_D; w)$.
- 2. Регулятор упреждающего воздействия: вычисление $\mu_e(t)$ по результатам решения задачи (1).
- 3. Блок прогнозирования: вычисление прогнозируемого состояния управляемого объекта $y_M(t)$ с учетом управляющего воздействия $\mu_e(t)$.
- 4. Блок текущей идентификации: при выполнении условия $\varepsilon_i(t) > \varepsilon_{0i}$ вычисление параметров модели $z_i'(t)$, $i = \overline{1,p}$.

Приведенное к конечному виду решение задачи управления с адаптируемой прогнозирующей моделью имеет следующий вид:

$$\min_{\mu(t) \in \mu_{D}} \sum_{i=1}^{p} w_{i}^{2} \left(H_{\lambda}(z_{i}(t))^{T} \Delta \lambda(t) + H_{\mu}(z_{i}(t))^{T} \left(\mu_{0}(t) - \mu_{e_{0}}(t-1) \right) + \sum_{f=1}^{\beta} L^{f} H_{\mu}(z_{i}(t))^{T} \left(\mu_{f}(t) - \mu_{f-1}(t) \right) + V_{0} y_{M_{i}}(t-1) + y_{i}(t) - y_{M_{0}_{i}}(t-1) - y_{D_{i}}(t) \right)^{T} \left(H_{\lambda}(z_{i}(t))^{T} \Delta \lambda(t) + H_{\mu}(z_{i}(t))^{T} \left(\mu_{0}(t) - \mu_{e_{0}}(t-1) \right) + \sum_{f=1}^{\beta} L^{f} H_{\mu}(z_{i}(t))^{T} \left(\mu_{f}(t) - \mu_{f-1}(t) \right) + V_{0} y_{M_{i}}(t-1) + y_{i}(t) - y_{M_{0}_{i}}(t-1) - y_{D_{i}}(t) \right) \rightarrow \mu_{e}(t),$$
(2)

где H_{μ} , H_{λ} — переходные характеристики по каналам управления и регистрируемого возмущающего воздействия соответственно, $\mu_{e_0}(t)$ — подаваемое управляющее воздействие в момент t, $\Delta\lambda(t)=\lambda(t)-\lambda(t-1)$, L — нижне-сдвиговая матрица. y(t) — текущее состояние управляемого объекта, V_0 — матрица смещения прогнозируемого состояния, $y_{M_0}(t-1)$ — прогнозируемое состояние объекта управления в момент t, рассчитанное в момент t-1.

Приведенная к конечному виду формула для вычисления прогнозируемого состояния для p контролируемых переменных имеет следующий вид:

$$y_{M_{i}}(t) = H_{\mu}(z_{i}(t))^{T} \left(\mu_{e_{0}}(t) - \mu_{e_{0}}(t-1)\right) + H_{\lambda}(z_{i}(t))^{T} \Delta \lambda(t) + V_{0} y_{M_{i}}(t-1) + y_{i}(t) - y_{M_{0}}(t-1), i = \overline{1, p}.$$
(3)

Задача текущей параметрической идентификации модели приводится в форме целевой функции, сформированной методом наименьших квадратов:

$$\min_{z_{i}(t)} \sum_{f=1}^{N} \left(y_{i_{f}}^{e} - y_{i_{f}}^{ap} (z_{i}(t)) \right)^{2} \to z_{i}'(t), i = \overline{1, p}.$$
 (4)

где y_i^e — реальные значения контролируемой переменной, y_i^{ap} — выходной сигнал динамической модели, N — объем выборки исторических данных.

Следуя принципу суперпозиции, расчет выходного сигнала модели y_i^{ap} осуществляется методом итерационного наложения переходных характеристик процесса относительно исходного состояния переменной $y_{i_1}^e$:

$$y_{i_f}^{ap}(z_i(t)) = \sum_{v=1}^{f-1} h(z_i(t), f - v)^T \Delta x_v + y_{i_1}^e,$$
 (5)

где h(z,v) – функция переходного процесса, x(t) – общий набор входных сигналов модели.

Структура используемой динамической модели управляемого объекта ограничена ДУ второго порядка с временным запаздыванием:

$$b_2 \frac{d^2 y(t)}{dt^2} + b_1 \frac{dy(t)}{dt} + y(t) = k \left(a_1 \frac{dx(t-\tau)}{dt} + x(t-\tau) \right). \tag{6}$$

Тогда параметрическую конфигурацию модели $z_i(t)$ удобно представить в виде последовательности конкатенированных вектор-матриц $k_i(t)$, $a_i(t)$, $b_{1i}(t)$, $b_{2i}(t)$, $\tau_i(t)$. Отсюда задача параметрической адаптации многомерной прогнозирующей модели преобразуется к виду:

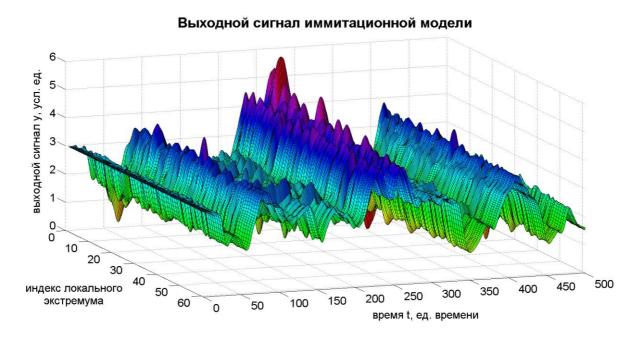
$$\min_{k_{i}, a_{i}, b_{1_{i}}, b_{2_{i}}, \tau_{i}} \sum_{f=2}^{N} \left(y_{i_{v}}^{e} - \sum_{v=1}^{f-1} h(z_{i}(t), f - v)^{T} \Delta x_{v} \right)^{2} \\
\rightarrow k'_{i}, a_{1'_{i}}, b_{1'_{i}}, b_{2'_{i}}, \tau'_{i}, \tag{7}$$

где
$$h(z_i(t),f) = k_{ij} \left(1 + \frac{\left(c_{1i_j} - a_{1i_j}\right)e^{-\frac{f - \tau_{ij}}{c_{1i_j}} - \left(c_{2i_j} - a_{1i_j}\right)e^{-\frac{f - \tau_{ij}}{c_{2i_j}}}}{c_{2i_j} - c_{1i_j}} \right), \quad j = \overline{1,q}, \quad q$$

количество входных сигналов модели, $b_{1i_j}=c_{1i_j}+c_{2i_j},\,b_{2i_j}=c_{1i_j}c_{2i_j}.$

Принимая допущение о постоянстве переходного процесса вне горизонта прогнозирования: $h(z_i(t),f)|_{f \ge \gamma} = k_i$, где γ – время выхода контролируемой

переменной в установившееся состояние, — конечная форма задачи параметрической адаптации многомерной прогнозирующей модели преобразуется к виду:


$$\min_{z_i(t)} \sum_{f=2}^{N} \left(y_{i_f}^e - \left(\sum_{v=1}^{f-\gamma-1} k_i^T \Delta x_v + \sum_{v=f-\gamma}^{f-1} h(z_i(t), f-v)^T \Delta x_v \right) \right)^2 \to z_i'(t).$$
 (8)

Вычисление и актуализация параметрической конфигурации прогнозирующей многомерной модели процесса для обеспечения условий робастности осуществляется независимо от функционирования управляющего алгоритма.

Третья глава посвящена разработке методических указаний реализации программного решения параметрической идентификации динамической модели технологического объекта. Для ЭТОГО с использованием имитационной модели случайного технологического процесса с множеством входов и одним выходным сигналом рассмотрен пример определения актуальной параметрической конфигурации модели по данным функционирования модели в вычислительном эксперименте. Исходным массивом ДЛЯ определения динамических характеристик системы является набор регистрируемых нормально случайных распределенных входных сигналов, пропущенных высокочастотный фильтр, и соответствующий им во времени зашумленный выходной сигнал имитационной модели.

По полученным данным произведен анализ гиперповерхности целевой функции задачи (8) путем многократного запуска оптимизационного алгоритма из случайно распределенных по равномерному закону точек вблизи известного глобального экстремума, соответствующего задаваемой параметрической конфигурации имитационной модели. Приведены результаты моделирования для образованной выборки параметрических наборов имитационной модели (рис. 2). Выявлено, что точность, достигаемая при идентификации динамических характеристик многоканального объекта, не зависит от степени удаленности отдельных параметров динамической модели от установленного глобального минимума. Наилучшая модель определяется комплексно наиболее благоприятной комбинацией аргументов целевой функции.

С учетом неоднозначной структуры целевой функции и отсутствии явных закономерностей в распределении экстремальных точек относительно реального состояния исследуемого объекта, для решения задачи параметрической идентификации динамической модели выбран класс квазиньютоновских методов численной оптимизации, обладающих высокой скоростью сходимости за счет накопления информации о кривизне целевой функции. Приведены условия выполнения поиска обновленной конфигурации динамической модели, описаны программные особенности реализации инструментов текущей идентификации и количественные критерии оценки применимости исходных данных.

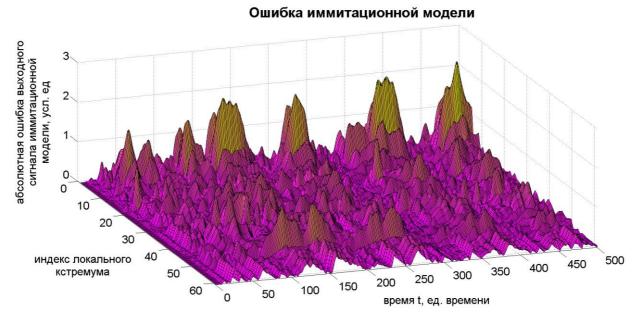


Рисунок 2 — Результаты идентификации имитационной модели

Четвертая глава посвящена апробации разработанного решения идентификации динамической модели процесса по данным функционирования управляемого технологического объекта в режиме нормальной эксплуатации.

В качестве примера рассматривается установка одного из нефтехимических предприятий по получению масляных и изомасляных альдегидов методом оксосинтеза производства бутиловых спиртов. Технологический процесс

запроектирован ПО непрерывной схеме (рис. 3), основными управляемыми параметрами которого являются конверсия подаваемого пропилена (CV1) и дальнейшая потеря пропилена в сдувках (CV2). Приведено описание стратегии управления процессом, отражающее перечень входных сигналов

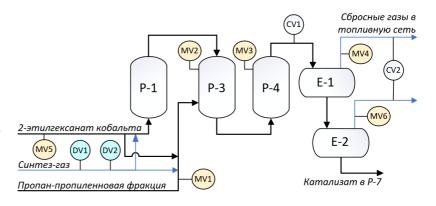


Рисунок 3 — Схема получения масляных альдегидов методом оксосинтеза

динамической модели состояния контролируемых технологических параметров.

актуальной, соответствующей текущим Для определения управляемого объекта, параметрической конфигурации модели используется исторический период функционирования процесса в режиме нормальной эксплуатации. Структура и конфигурация исходной модели определены при внедрении управляющей системы по результатам активного эксперимента тестирования описанных каналов передачи. Обновление пошагового динамической модели процесса оксосинтеза с использованием разработанной методики представлено в таблице 1 в форме передаточной функции, где s – оператор Лапласа, мин.

 Таблица 1. Результаты построения актуальной динамической модели процесса оксосинтеза

	Исходна	я модель	Обновленная модель		
	CV1	CV2	CV1	CV2	
MV1	$0.0353 \frac{1}{20s + 1}$	$8.82 \frac{1}{20s+1}$	$0.0421 \frac{1}{18.78s + 1}$	$12.36 \frac{1}{18.93s + 1}$	
MV2	$0.0678 \frac{1}{15s + 1}$	$-13\frac{0.51s+1}{3.89s^2+2.36s+1}$	$0.0348 \frac{1}{17.82s + 1}$	$-4.5 \frac{1.41s + 1}{3.76s^2 + 2.54s + 1}$	
MV3	$0.0025 \frac{1}{15s+1} e^{-4s} \qquad -15.3 \frac{0.51s+1}{130s^2+22.8s+1} 0.0$		$0.0016 \frac{1}{14.34s + 1} e^{-6s}$	$-7.01 \frac{0.21s + 1}{130s^2 + 23s + 1}$	
MV4	$0.007 \frac{1}{5s+1} e^{-3s}$	0	$0.009 \frac{1}{6.02s + 1} e^{-3s}$	0	
MV5	$0.021 \frac{1}{6.25s^2 + 5s + 1} \qquad -68.2 \frac{1}{10.1s + 1} e^{-6s} \qquad 0.022 \frac{1}{6.25s^2 + 5s}$		$0.022 \frac{1}{6.25s^2 + 5s + 1}$	$-46.7 \frac{1}{10.27s + 1} e^{-6s}$	
MV6	0	$-86.1\frac{1}{15s+1}$	0	$-83\frac{1}{13.63s+1}$	
DV1	$0.0021 \frac{1}{12s+1} e^{-2s}$	$19.4 \frac{1}{22.4s + 1} e^{-24s}$	$0.0024 \frac{1}{13.82s + 1} e^{-2s}$	$19.19 \frac{1}{22.5s + 1} e^{-23s}$	
DV2	$0.01 \frac{2.57s + 1}{9.22s^2 + 6.72s + 1}$	$0.659 \frac{1}{15s+1} e^{-2s}$	$0.01 \frac{2.55s + 1}{9.89s^2 + 5.23s + 1}$	$1.132 \frac{1}{12.78s + 1} e^{-2s}$	

Полученная по результатам применения разработанной методики и исходная параметрические конфигурации модели протестированы на отдельной выборке экспериментальных исторических данных, включающей временной период функционирования управляемого объекта в режиме нормальной эксплуатации. По данным моделирования на тестовой выборке среднее квадратичное отклонение (СКО) прогнозируемого состояния конверсии пропилена от соответствующих безразмерных реальных значений снизилось с $4,159 \times 10^{-3}$ до $2,045 \times 10^{-3}$, СКО прогнозируемого состояния потери пропилена в сдувках от соответствующих реальных значений снизилось с 6.483 кг/ч до 5.112 кг/ч (рис. 4,5).

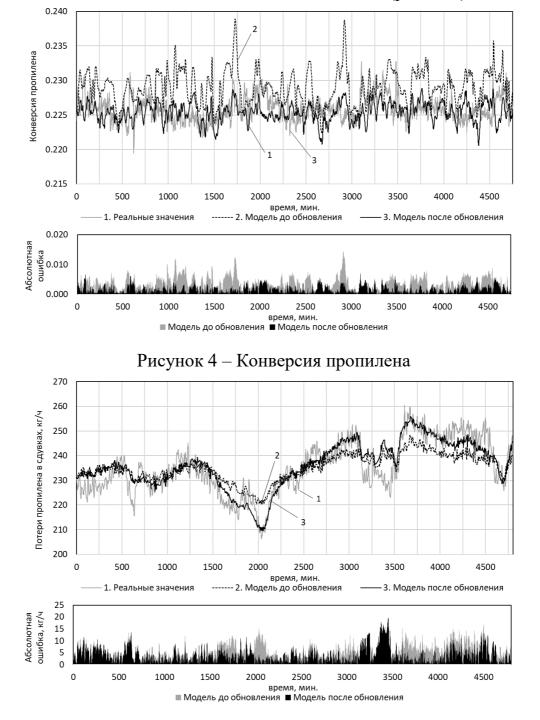


Рисунок 5 – Потери пропилена в сдувках

Пятая глава посвящена практическому применению разработанной методике параметрической адаптации прогнозирующей модели состояния технологического объекта прикладного анализу результатов моделей использования адаптивных замкнутом контуре многокритериальных управляющих систем.

Для ЭТОГО рассмотрена система управления с прогнозирующей моделью процессом депропанизации установки компримирования газоразделения производства олефинов. Представлено описание технологического процесса, стратегии автоматизированного (рис. управления 6) структуры многопараметрического контроллера задействованной прогнозирующей моделью. Приведены результаты построения обновленной матрицы

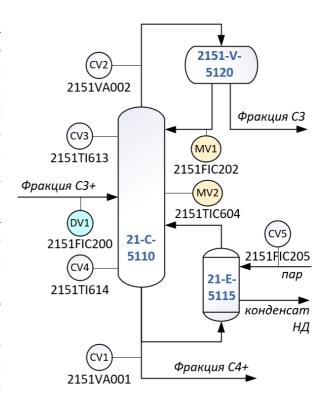


Рисунок 6 – Схема управления процессом депропанизации

коэффициентов усиления по данным функционирования управляющей системы в режиме нормальной эксплуатации (таблица 2).

Таблица 2. Результаты обновления коэффициентов усиления динамической модели процесса депропанизации

	Исходная модель			Обновленная модель		
	MV1	MV2	DV1	MV1	MV2	DV1
CV1	0	-67.200	2.990	0	-57.343	3.746
CV2	-0.0689	8.060	28.500	-0.0402	7.127	18.951
CV3	0	0.866	0	0	1.356	0
CV4	-0.365·10 ⁻³	0.0298	0.164	-0.218 · 10 -3	0.0332	0.131
CV5	0.144	25.100	97.400	0.150	45.818	68.250

Полученный по итогам вычислительного эксперимента набор коэффициентов усиления применен для динамической модели в контуре системы управления процессом депропанизации. Произведен расчет показателей качества автоматического регулирования до и после обновления прогнозирующей модели.

По результатам параметрической актуализации прогнозирующей модели индекс воспроизводимости для содержания пропана в кубовой фракции увеличился с 2.185 до 2.827 (рис. 7), для содержания бутана в пропановой фракции индекс воспроизводимости увеличился с 2.112 до 2.894 (рис. 8).

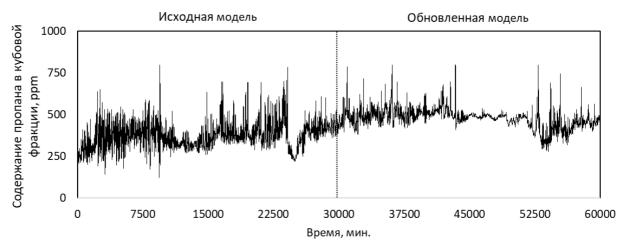


Рисунок 7 – Содержание пропана в кубовой фракции

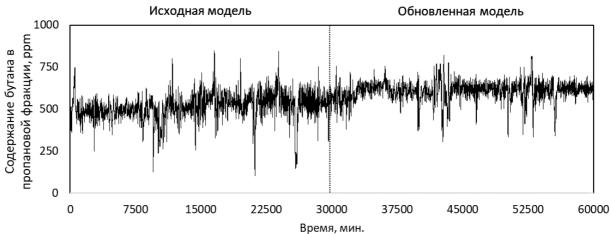


Рисунок 8 – Содержание бутана в пропановой фракции

ЗАКЛЮЧЕНИЕ

Основным результатом диссертационной работы является решение научной задачи разработки формализованных алгоритмов управления с адаптируемой прогнозирующей моделью, позволяющих повысить качество автоматического регулирования и устойчивость управляющего контура для нелинейных технологических систем. В ходе работы:

- 1. Проведен анализ существующих алгоритмических решений задачи управления с прогнозирующей в условиях неопределенности реальных динамических характеристик управляемого объекта.
- 2. Разработан алгоритм управления c прогнозирующей адаптируемой параметрической конфигурацией в соответствии с текущими характеристиками управляемого технологического объекта для решения проблемы снижения качества автоматического регулирования и потери устойчивости управляющего контура вследствие снижения точности моделирования поведения контролируемых переменных процесса. Применение описанного управления прогнозирующей c моделью позволило сократить время

проектирования программного обеспечения класса СУУТП не менее чем на 10% от общего времени разработки.

- 3. Разработан метод идентификации многомерной динамической модели управляемого технологического объекта по историческим данным функционирования управляющей системы.
- 4. Исследована поверхность целевой функции задачи текущей параметрической идентификации динамических характеристик управляемого технологического объекта с целью выбора метода численной оптимизации и формализации методических указаний с учетом сходимости решения и распределения экстремумов целевой функции.
- 5. Внедрено разработанное решение задачи текущей идентификации динамической модели в замкнутом контуре управляющей системы массообменным процессом блока депропанизатора установки компримирования и газоразделения производства олефинов, что позволило улучшить индекс воспроизводимости контролируемых показателей качества выпускаемой продукции: в 1.29 и 1.37 раз для содержания пропана кубовой фракции и для содержания бутана в очищенном пропане соответственно.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Публикации в рецензируемых изданиях:

- 1. **Работников**, **М.А.** Применение адаптируемых моделей в системах упреждающего управления процессами органического синтеза / М.А. Работников, А.Г. Шумихин // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. -2023. N = 46. C. 67-82.
- 2. **Работников, М.А.** Модернизация системы усовершенствованного управления установки ректификации стирола / М.А. Работников, А.В. Тихомиров, И.А. Вялых // Вестник Пермского национального исследовательского политехнического университета. Химическая технология и биотехнология. 2020. $N_{\rm P}$ 3. С. 82-94.
- 3. **Работников, М.А.** Техническое проектирование системы усовершенствованного управления каталитическим риформингом / М.А. Работников, И.А. Вялых, А.М. Немтин // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. − 2019. − № 30. − С. 119-132.

Публикации в изданиях, входящих в базу цитирования RSCI:

4. **Работников, М.А.** Применение теории особенностей Уитни для оценки устойчивости функционирования технологических процессов при выборе частоты дискретизации управляющего сигнала / М.А. Работников, Б.Г. Стафейчук, А.Г. Шумихин // Проблемы управления. — 2022. — № 6. — С. 35-41.

5. **Работников**, **М.А.** Разработка метода обновления многомерной динамической модели управляемого технологического объекта / М.А. Работников // Проблемы управления. -2021. - № 3. - C. 58-64.

Публикации в изданиях, входящих в международные базы цитирования:

6. **Работников, М.А.** Реконфигурация системы регулирования температуры газосырьевой смеси на выходе печи установки каталитического риформинга по данным эксплуатации технологического объекта / М.А. Работников, А.С. Александрова, А.Г. Шумихин // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. — 2021. — № 54. — С. 12-19 (**Web of Science**).

Публикации в других изданиях:

- 7. **Работников, М.А.** Анализ применимости решений управления с адаптивной прогнозирующей моделью / М.А. Работников // Наука. Технологии. инновации 2025: сборник статей междунар. науч.-практ. конф, Петрозаводск, 11 февраля 2025 года. Петрозаводск: Международный центр научного партнерства «Новая Наука», 2025. С. 27-31.
- 8. Герман, А.М. Особенности технического проектирования и внедрения систем оптимизации в реальном времени / А.М. Герман, **М.А. Работников** // Химия. Экология. Урбанистика : материалы Всерос. науч.-практ. конф. Пермь: Пермский национальный исследовательский политехнический университет, 2024. Т. 3 С. 297-300.
- 9. **Работников, М.А.** Адаптация динамической модели процесса оксосинтеза в контуре системы усовершенствованного управления / М.А. Работников // Автоматизированные системы управления и информационные технологии : материалы Всерос. науч.-практ. конф. Пермь: Пермский национальный исследовательский политехнический университет, 2023. Т. 1 С. 452-456.
- 10. **Работников, М.А.** Алгоритмы упреждающего управления с применением адаптивной динамической модели процесса / М.А. Работников, А.Г. Шумихин // Химия. Экология. Урбанистика : материалы Всерос. науч.-практ. конф. Пермь: Пермский национальный исследовательский политехнический университет, 2023. Т. 3 С. 281-284.
- 11. **Работников, М.А.** Ключевые аспекты проблематики динамического моделирования в задачах предиктивного управления непрерывными технологическими процессами / М.А. Работников // Актуальные проблемы современной науки, техники и образования. -2021. T. 12, № 1. C. 84-86.
- 12. **Работников, М.А.** Исследование проблемы устаревания динамических моделей в задаче предиктивного управления технологическими процессами / М.А. Работников // Инновации. Интеллект. Культура: материалы IV междунар. науч.практ. конф. Тобольск: Тюменский индустриальный университет, 2021. С. 108-111.

- 13. **Работников, М.А.** Постановка проблемы деградации динамической модели управляемого технологического объекта / М.А. Работников // Актуальные проблемы современной науки, техники и образования : тезисы докладов 79-й междунар. науч.-техн. конф. Магнитогорск: Магнитогорский государственный технический университет им. Г.И. Носова, 2021. Т. 1 С. 375.
- 14. **Работников, М.А.** Стратегия реализации управления материальным балансом исчерпывающей части ректификационной колонны получения стирола / М.А. Работников // Химия. Экология. Урбанистика: материалы Всерос. науч.-практ. конф. Пермь: Пермский национальный исследовательский политехнический университет, 2021. Т. 4 С. 242-246.
- 15. **Работников, М.А.** Синтез систем комбинированного управления по результатам частотной идентификации объекта управления / М.А. Работников, А.С. Александрова // Химия. Экология. Урбанистика: материалы Всерос. науч.-практ. конф. Пермь: Пермский национальный исследовательский политехнический университет, 2019. Т. 2 С. 378-382.
- 16. **Работников, М.А.** Расчет показателей качества продуктов нефтепереработки с применением нелинейных регрессионных моделей / М.А. Работников, И.А. Вялых, В.Г. Плехов // Автоматизированные системы управления и информационные технологии : материалы Всерос. науч.-практ. конф. Пермь: Пермский национальный исследовательский политехнический университет, 2019. Т. 1 С. 310-313.
- 17. **Работников, М.А.** Идентификация объекта управления по экспериментальным частотным характеристикам исследуемых каналов / М.А. Работников, А.С. Александрова // Автоматизированные системы управления и информационные технологии : материалы Всерос. науч.-практ. конф. Пермь: Пермский национальный исследовательский политехнический университет, 2019. Т. 1 С. 230-233.
- 18. **Работников, М.А.** Анализ целевой функции для задачи аппроксимации экспериментальной КЧХ передаточной функцией / М.А. Работников // Инновационные технологии: теория, инструменты, практика : материалы X междунар. конф. Пермь: Пермский национальный исследовательский политехнический университет, 2018. С. 193-198.
- 19. **Работников, М.А.** Автоматизация обработки экспериментальной комплексной частотной характеристики при идентификации управляемого объекта / М.А. Работников, А.С. Александрова А.Г. Шумихин // Вестник Пермского национального исследовательского политехнического университета. Химическая технология и биотехнология. 2018. No. 1. C. 21-33.
- 20. **Работников, М.А.** Автоматизация поиска значений параметров передаточной функции канала передачи по экспериментальной комплексной частотной характеристике / М.А. Работников, А.С. Бояршинова, А.Г. Шумихин // Вестник Пермского национального исследовательского политехнического университета. Химическая технология и биотехнология. − 2017. − № 2. − С. 63-76.