ОТЗЫВ

официального оппонента

на диссертационную работу **Акуловой Светланы Николаевны** «Повышение механических свойств изделий из сплава системы Ti-Al-V, получаемых методом аддитивной плазменной наплавки»,

представленную на соискание ученой степени кандидата технических наук по специальности 2.5.8. Сварка, родственные процессы и технологии (технические науки)

Актуальность темы диссертации

В современной промышленности для изготовления деталей из титановых сплавов получили распространение аддитивные технологии, позволяющие в ряде случаев значительно сократить производственный цикл и затраты на использование дорогостоящих материалов.

При всем разнообразии современных способов аддитивного производства (прежде всего основанных на использовании сварочной дуги), проблема повышения качества формирования и обеспечения стабильных геометрических размеров деталей, сохраняет на сегодняшний день особую актуальность и является, пожалуй, основным направлением совершенствования свойств «напечатанных» изделий из высокотемпературных конструкционных сплавов на основе никеля и титана. Ее решение неотъемлемо связано с поиском способов управления структурно-фазовым составом послойно наплавляемых заготовок, что ряде случаев достигается применением B охлаждения наплавленного металла потоком газов, водой в медном основании, варьированием погонной энергии наплавки, электропитанием дуги импульсным током, а также магнитным колебанием дуги.

Плазменная наплавка с использованием присадочной проволоки является технологически более гибким способом по управлению тепловложением, резерв возможностей которого позволяет разработать новые приемы для повышения эффективности процесса послойного формирования изделий из структурно чувствительных к сварочному термодеформационному циклу титановых сплавов с одновременным улучшением их структуры и прочностных и вязкопластических свойств.

Реализации такого актуального подхода к аддитивному изготовлению изделий из востребованного в промышленности титанового сплава Ti-6Al-4V посвящена диссертационная работа Акуловой С.Н.

Степень обоснованности научных положений, выводов и рекомендаций, сформулированных в диссертации, их достоверность и новизна.

Обоснованность и достоверность результатов диссертационного исследования подтверждается применением современных взаимодополняющих методов анализа структурно-фазового состояния наплавленного металла, включающих: оптическую и растровую электронную микроскопию, локального энергодисперсионного и рентгенофазового анализа. Результаты математического моделирования термических условий формирования слоев в многослойном металле получили подтверждение при экспериментальной оценке влияния режима плазменной наплавки на структуру исследуемого титанового сплава. Ее исследование свидетельствует о достижении поставленных в работе показателей по обеспечению скорости охлаждения (30-40 °C/c), минимизации времени нахождения в интервале температур полиморфного превращения (700-900 °C), исключения как перегрева, обусловливающего огрубление структуры и укрупнения первичных β-зерен, так и эффекта закалки с образованием мартенсита крупноигольчатой формы. Получение положительного результата в условиях столь сложно совместимых требований заслуживает высокой оценки.

Основные научные достижения диссертации состоят в раскрытии взаимосвязей между параметрами разработанного термического цикла плазменной наплавки и длительностью межслойного охлаждения, контролирующей степень протекания трансформации $\alpha+\beta$ -структуры, количество и размер α -, α '- и β -составляющих, а также способствующего не только уменьшению размеров первичных β -зерен, но ограничению их прорастание в последующие слои. В совокупности эти изменения обеспечивают повышение показателей прочности и пластичности. Важно заметить, что повышенный комплекс механических свойств обеспечивается в выращенной в процессе послойной наплавки стенки как в горизонтальном, так в вертикальном направлениях.

Другой значимый научный результат состоит в возможности применения регулируемого термического цикла для стабильного ведения процесса многослойной плазменной наплавки в контролируемой атмосфере по двухдуговой схеме.

Значимость полученных в диссертации результатов и перспективы их применения.

Результаты диссертационной работы представляют интерес для теории и практики не только аддитивного производства, но и для технологий многослой-

ной наплавки сложнолегированных сплавов. На основе математического моделирования диссертантом определён наиболее рациональный термический цикл плазменной наплавки, использование которого дает возможность получать многослойные заготовки со стабильными геометрическими параметрами, в частности, с отсутствием волнообразного профиля боковых стенок, пор, несплавлений и трещин.

Преимуществом разработанной технологии аддитивной плазменной наплавки в камере с защитной атмосферой, определяющей практическую значимость полученных в диссертации результатов, является значительное (в 1,5-2 раза) повышение прочностных ($\sigma_{\rm B}$ до 840 МПа) и вязкопластических (КСU 400-560 кДж/м²) по сравнению с целевыми значениями, выбранными по свойствам проволоки ВТ6св. Другим важным с практической точки зрения результатом является возможность отказаться от проведения термической обработки, например, отжига, который используют для выравнивания ориентации игл и пластинок α '-фазы в объеме наплавленных слоев и который в ряде случаев приводит к увеличению размера и объемного содержания в структуре β -зерен.

Практическая значимость результатов исследований также подтверждается использованием их в разработке рабочей конструкторской документации по оборудованию для аддитивной наплавки для компании ООО «РусАТ».

Результаты диссертационного исследования имеют перспективу для внедрения в аддитивное производство изделий из титановых сплавов, а также могут быть использованы при создании программного обеспечения для автоматизации плазменной наплавки с регулируемым термическим циклом сплавов других перспективных систем легирования, аддитивная технология печати которых сдерживается отсутствием эффективного инструмента по регулирования тепловложения.

Степень апробации диссертационной работы и соответствия содержания автореферата ее положениям.

Работа базируется на большом количестве экспериментальных исследований, их качественном анализе и обработке. Оформление диссертации и автореферата соответствует требованиям, предъявляемым к кандидатским диссертациям. Содержание автореферата соответствуют содержанию диссертации, и позволяет понять и оценить основные результаты диссертационного исследования, их научную новизну и практическую значимость.

Результаты работы прошли хорошую апробацию на международных и всероссийской научных конференция и достаточно полно (7 статей) опубликованы в периодической научной печати в изданиях из перечня ВАК. Имеется 4 публикации, проиндексированные в международной базе данных Scopus и WoS.

Замечания по работе

- 1. При анализе термических циклов остается неясным, для какой точки или участка наплавленного слоя (в средней части или на поверхности) они рассчитывались?
- 2. В третьей главе ограниченное внимание уделено иллюстрации результатов математического моделирования в системе Ansys. Например, представляет интерес знание особенностей формирования поля температур и распределения скоростей охлаждения по высоте многослойного металла, что позволит оценить роль термического воздействия на нижележащие слои в процессе наплавки, а не только в отдельно рассматриваемом слое наплавленного металла. Это сделало бы более полным и информативным анализ термических циклов.
- 3. Принятый при решении тепловой задачи нормально-круговой источник не учитывает изменения в распределенности теплового потока при наплавке по двухдуговой схеме, что может повлиять на параметры предпочтительного термического цикла. Задача по корректированию формы источника представляет самостоятельный исследовательский интерес.
- 4. В диссертации целесообразно было бы обосновать диапазон толщин послойно формируемой по предложенной технологии «стенки», в котором изменение условий теплопередачи не оказывает влияние на качество формирования металла, а также предоставить рекомендации по дальнейшему использованию полученных заготовок.

Указанные замечания не снижают научной ценности и общего положительного впечатления от диссертационного исследования, результаты которого расширяют сферу применения аддитивных технологий.

Заключение

Диссертация Акуловой Светланы Николаевны является научноквалификационной работой, выполненной соискателем на высоком методическом и научном уровне. Совокупность полученных результатов можно классифицировать как разработку новых научно обоснованных технических и технологических решений по аддитивной плазменной наплавке титановых сплавов, имеющих важное значение для экономики России.

По своей актуальности, научной новизне, практической значимости и личному вкладу автора, представленная диссертационная работа соответствует требованиям, установленным Положением о присуждении ученых степеней, утвержденного Постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842, и Порядком присуждения ученых степеней в ПНИПУ, утвержденным приказом ректора ПНИПУ от 28 мая 2024 г. №27-О, предъявляемым к диссертациям на соискание ученой степени кандидата наук, а автор диссертационной работы Акулова Светлана Николаевна заслуживает присуждения ученой степени кандидата технических наук по научной специальности 2.5.8 Сварка, родственные процессы и технологии (технические науки).

Официальный оппонент:

профессор кафедры «Оборудование и технология сварочного производства» Волгоградского государственного технического университета, доктор технических наук (научная специальность 05.02.10 – Сварка, родственные процессы и технологии), доцент

1	 Зорин	Илья	Васильевич
	_		

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный технический университет» (ВолгГТУ)

Адрес: 400005, г. Волгоград, проспект им. В.И. Ленина, д. 28.

Тел.: (8442) 23-06-42; e-mail: zorin.iv@vstu.ru

и, В 25 das (прапись)