УТВЕРЖДАЮ

Ректор Пермского национального

исследовательского

политехнического университета,

сн. наук, профессор

А.Б. Петроченков

eremeen 2025 r.

М.Π.

ЗАКЛЮЧЕНИЕ

THOMEST OF THE

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет» Министерства науки и высшего образования Российской Федерации

Диссертация «Многоуровневые конститутивные модели неупругого деформирования металлов с описанием измельчения зеренной структуры» по научной специальности 1.2.2. Математическое моделирование, численные методы и комплексы программ на соискание ученой степени кандидата физикоматематических наук выполнена на кафедре «Математическое моделирование систем и процессов» Федерального государственного автономного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет».

В период подготовки диссертации соискатель Романов Кирилл Андреевич образовательном Федеральном государственном автономном работал национальный образования «Пермский учреждении высшего кафедре исследовательский политехнический университет» на «Математическое моделирование систем и процессов» в должности ассистента, «Многоуровневое моделирование конструкционных лаборатории функциональных материалов» в должности младшего научного сотрудника.

2020 году окончил Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермский национальный исследовательский политехнический университет» по направлению подготовки 01.03.02 Прикладная математика и информатика (бакалавр), в 2022 году государственное образовательное окончил Федеральное автономное образования «Пермский национальный учреждение высшего исследовательский политехнический университет» по направлению подготовки 01.04.02 Прикладная математика и информатика (магистр). В настоящий момент является аспирантом 3-го года обучения по специальности 1.2.2. Математическое моделирование, численные методы и комплексы программ.

Научный руководитель — доктор физико-математических наук, доцент Швейкин Алексей Игоревич работает проректором по науке и инновациям, ведущим научным сотрудником Федерального государственного автономного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет».

По итогам обсуждения принято следующее заключение:

1. Личное участие автора в получении результатов, изложенных в диссертации, заключается в следующем:

Все представленные в диссертации результаты получены при личном участии автора: постановка задачи (совместно с научным руководителем), построение математических моделей и разработка алгоритмов их численной реализации; вычислительные эксперименты и анализ полученных результатов выполнены автором лично.

2. Научная новизна диссертационного исследования заключается в следующем:

Для базовой двухуровневой статистической конститутивной модели, разработанной на кафедре «Математического моделирования систем и процессов», проведен детальный анализ устойчивости к возмущениям начальных условий, воздействий и параметрам оператора. С её применением описаны сложные нагружения с изломом траектории деформации. В базовую

впервые статистическую конститутивную модель двухуровневую интегрирована известная в литературе подмодель для приближенного описания процесса измельчения; проведена её модификация, разработан алгоритм реализации. Предложена новая многоуровневая статистическая конститутивная модель для описания напряженно-деформированного состояния и процесса фрагментации зеренной структуры металлов с ГЦК-решеткой при низких гомологических температурах. В модели учитываются дислокационные процессы внутри фрагментов и в их границе, развороты фрагментов, эволюция средних размеров фрагментов и зерен. Сформулированы алгоритмы реализации моделей с использованием вычислительно эффективных численных методов. Созданы программы ДЛЯ ЭВМ, реализующие созданные использованием предложенных алгоритмов. Проведен детальный анализ результатов моделирования деформирования материалов ходе технологических процессов с углубленным исследованием действующих при фрагментации зерен механизмов деформирования.

- 3. Степень достоверности результатов проведенных исследований подтверждается удовлетворительным соответствием результатов численного моделирования данным натурных экспериментов для простых и сложных нагружений, в том числе по характеристикам мезо- и микроструктуры материала (текстурам, плотностям дислокаций, углам разориентации фрагментов и средним размерам ячеек, фрагментов, зерен), результатами численной оценки устойчивости и сходимости модели.
- 4. Практическая и теоретическая значимость диссертационного исследования:

Теоретическую значимость работы составляют формулировки многоуровневых статистических конститутивных моделей для приближенного (через эволюцию среднего размера ячеек) и углубленного комплексного (с учетом дислокационных процессов внутри фрагментов и в их границе, разворотов фрагментов, эволюции средних размеров фрагментов и зерен) описания процесса фрагментации.

Практическая значимость работы заключается в возможности использования созданных моделей и комплекса программ для описания технологических процессов обработки давлением промышленных металлов, в том числе с применением интенсивных пластических деформаций, что позволит за счет анализа структуры и реализации механизмов деформирования разрабатывать рекомендации по их совершенствованию.

5. Полнота изложения материалов диссертации в работах, опубликованных соискателем

По теме диссертационной работы Романовым Кириллом Андреевичем опубликовано 26 научных работ, в том числе 7 статей в ведущих журналах, из которых 5 публикаций — в изданиях, индексированных в международных базах цитирования Web of Science и/или Scopus, 2 статьи в ведущих рецензируемых изданиях из перечня ВАК; получены 2 свидетельства о государственной регистрации программы для ЭВМ.

Наиболее значимые работы:

Переводная версия:

Shveykin A.I. An approach to numerical estimating the stability of multilevel constitutive models / A.I. Shveykin, P.V. Trusov, K.A. Romanov // Computational Continuum Mechanics. – 2021. – V. 14. – No. 1. – P. 61–76 (**Scopus**).

Введено понятие устойчивости решения, в отличие от традиционного учитывающее параметрическое возмущение оператора и возмущение истории воздействий. Соискателем разработана часть программы вычислительных экспериментов для реализации предлагаемого подхода, включающая рассмотрение разнообразных возмущений начальных условий, истории воздействий, оператора, и анализ норм их отклонений, а также интегральной нормы отклонения возмущенных решений от базовых (получаемых в расчетах с невозмущенными параметрами).

2. Швейкин А.И. Некоторые результаты численной оценки устойчивости двухуровневой конститутивной модели ГЦК-поликристалла / А.И. Швейкин, П.В. Трусов, **К.А. Романов** // Вычислительная механика сплошных сред. — 2021. - T. 14. - № 2. - C. 127–143. (вклад автора - 4 с. / 17 с.) (**ВАК**).

Переводная версия:

Shveykin A.I. Some results of a numerical estimating of the stability of the FCC metal two-level constitutive model / A.I. Shveykin, P.V. Trusov, K.A. Romanov // Computational Continuum Mechanics. – 2021. – V. 14. – No. 2. – P. 127–143 (Scopus).

Соискателем реализована часть функций численного алгоритма, с помощью которых продемонстрировано применение предлагаемого подхода для исследования устойчивости двухуровневой конститутивной модели ГЦК-поликристалла.

3. Shveykin A. Some issues with statistical crystal plasticity models: description of the effects triggered in FCC crystals by loading with strain-path changes / A. Shveykin, **K. Romanov**, P. Trusov // Materials. – 2022. – V. 15. – 6586 (вклад автора – 7 с. / 18 с.) (**Web of Science, Scopus**).

С использованием двухуровневой конститутивной статистической модели неупругого деформирования с известным анизотропным законом упрочнения, идентифицированной для алюминия, описаны возникающие в ходе нагружений с изломом траектории деформации эффекты, в том числе эффект «перекрестного упрочнения». Соискателем с использованием модели получены результаты и проведен их анализ, в ходе которого показана пригодность предложенных конститутивных моделей для описания протекающих процессов на различных масштабных уровнях.

4. **Romanov K.** Advanced statistical crystal plasticity model: description of copper grain structure refinement during equal channel angular pressing / K. Romanov, A. Shveykin, P. Trusov // Metals. – 2023. – V. 13. – 953 (вклад автора – 7 с. / 19 с.) (**Web of Science, Scopus**).

В состав двухуровневой статистической конститутивной модели ГЦКполикристалла интегрирована модифицированная подмодель ETMB (Y. Estrin, L.S. Toth, A.

Моlinari, Y. Brechet), приближенно описывающая процесс фрагментации (через эволюцию
среднего размера ячеек при деформировании). Соискателем с помощью этой модели
проведены вычислительные эксперименты по моделированию процесса изменения зеренной

структуры меди при равноканальном угловом прессовании при комнатной температуре и выполнен анализ полученных результатов.

5. Shveykin A. Stability of crystal plasticity constitutive models: observations in numerical studies and analytical justification / A. Shveykin, P. Trusov, **K. Romanov** // Metals. – 2024. – V. 14. – 947. (вклад автора – 10 с. / 30 с.) (**Web of Science, Scopus**).

Соискателем получены результаты применения методики численного исследования устойчивости многоуровневых моделей к разнообразным возмущениям истории воздействий, начальных условий и параметрическим возмущениям оператора для анализа двухуровневой конститутивной модели поликристаллического ГПУ альфа-титана при различных видах нагружения. Совместно с научным руководителем на основе первого метода Ляпунова аналитически показано, что конститутивные модели на основе вязкопластического соотношения Хатчинсона для описания внутризеренного неупругого деформирования проявляют стремление к устойчивости.

6. Romanov K.A. Two-level statistical constitutive model with integrated ETMB model: description of grain structure refinement of AISI 304 steel in cold bending / K.A. Romanov, A.I. Shveykin // Russian Physics Journal. – 2024. – V. 67. – No. 10. – P. 1555–1561 (вклад автора – 4 с. / 7 с.) (Scopus).

Соискателем с использованием двухуровневой статистической конститутивной модели с интегрированной ETMB подмоделью описан процесс измельчения зеренной структуры стали AISI 304 при холодной гибке. Проведено моделирование анализируемого технологического процесса с применением коммерческого пакета конечно-элементного анализа, предложен обоснованный выбор из режимов процесса такого, который обеспечивает меньший средний размер зерна.

7. **Романов К.А.** Многоуровневая статистическая конститутивная модель на базе континуальной дислокационной динамики и ее применение для комплексного описания трансформации структуры меди при равноканальном угловом прессовании / К.А. Романов, А.И. Швейкин // Вестник Пермского национального исследовательского политехнического университета. Механика. — 2025. — № 4. — С. 5—23. (вклад автора — 10 с. / 19 с.) (**ВАК, Scopus**).

Предложена новая многоуровневая статистическая конститутивная модель на базе континуальной дислокационной динамики для комплексного описания фрагментации зерен

металлов с ГЦК-решеткой, которая учитывает эволюцию плотности статистически накопленных и геометрически необходимых дислокаций, а также её влияние на изменение средних значений углов разориентации, размеров фрагментов и зерен в поликристалле. Соискателем с использованием многоуровневой конститутивной модели получены результаты изменения напряженно-деформированного состояния и ключевых параметров структуры (размеров зерен, текстуры, углов разориентации и размеров фрагментов, плотностей дислокаций); проведен их анализ.

Получены свидетельства о регистрации программ для ЭВМ:

8. Романов К.А., Швейкин А.И., Трусов П.В. Программная реализация модели ЕТМВ: модуль для описания измельчения зерен в двухуровневой статистической конститутивной модели. — Свидетельство о государственной регистрации программы для ЭВМ № 2024668653 от 9 августа 2024 г. (вклад автора −34%).

Соискателем разработан программный код, который предназначен для расчета среднего размера ячеек и плотности дислокаций согласно соотношениям модели ЕТМВ и может применяться для приближенного описания измельчения зерен в рамках программных реализаций различных моделей, описывающих напряженно-деформированное состояние материала при деформировании.

9. Романов К.А., Кондратьев Н.С., Швейкин А.И., Трусов П.В. Реализация многоуровневых конститутивных моделей материалов: интеграционный модуль для статистических моделей. — Свидетельство о государственной регистрации программы для ЭВМ № 2024691996 от 25 декабря 2024 г. (вклад автора — 25%).

Соискателем написан код пакета подпрограмм, используемых для численной реализации основных операций при построении многоуровневых статистических конститутивных моделей.

Прочие работы по теме диссертационного исследования:

10. Швейкин А.И. Численная оценка устойчивости многоуровневых конститутивных моделей / А.И. Швейкин, П.В. Трусов, К.А. Романов // XXII Зимняя школа по механике сплошных сред: Тезисы докладов (Пермь, 22-26 марта 2021 г.) / ПФИЦ УрО РАН. – Пермь, 2021. – С. 350.

- 11. Романов К.А. Описание измельчения зерен в рамках двухуровневой конститутивной модели ГЦК-поликристалла / К.А. Романов, А.И. Швейкин, П.В. Трусов // Математическое моделирование в естественных науках: Материалы XXX Всероссийской школы-конференции. Пермь, 2021. С. 69—71.
- 12. Романов К.А. Описание эффектов при нагружениях металлов с изломом траектории деформации с использованием двухуровневых конститутивных моделей / К.А. Романов, А.И. Швейкин, П.В. Трусов // XVI Международная конференция «Механика, ресурс и диагностика материалов и конструкций»: сб. материалов (Екатеринбург, 16-20 мая 2022 г.). Екатеринбург, 2022. С. 143.
- 13. Швейкин А.И. Исследование устойчивости отклика многоуровневых конститутивных моделей материалов: методика и результаты / А.И. Швейкин, П.В. Трусов, К.А. Романов // XVI Международная конференция «Механика, ресурс и диагностика материалов и конструкций»: сб. материалов (Екатеринбург, 16-20 мая 2022 г.). Екатеринбург, 2022. С. 170.
- 14. Романов K.A. Двухуровневая конститутивная интегрированной ЕТМВ подмоделью: некоторые результаты применения для описания измельчения зеренной структуры меди / К.А. Романов, А.И. Швейкин, П.В. Трусов, А.О. Полуянов // Тезисы докладов Международной конференции «Физическая мезомеханика материалов. Физические принципы нелинейного многоуровневой структуры И механизмы формирования поведения» (Томск, 5-8 сент. 2022 года). – Томск, 2022. – С. 353–354.
- 15. Романов К.А. Описание измельчения зеренной структуры при равноканальном угловом прессовании меди с помощью двухуровневой конститутивной модели / К.А. Романов, А.И. Швейкин, П.В. Трусов // Механика деформируемого твердого тела в проектировании конструкций: Программа и тезисы докладов (Пермь, 10-12 окт. 2022 г.) / ПФИЦ УрО РАН. Пермь, 2022. С. 90.

- 16. Романов К.А. Применение двухуровневой конститутивной модели для описания измельчения зеренной структуры меди при равноканальном угловом прессовании / К.А. Романов, А.И. Швейкин, П.В. Трусов // Математическое моделирование в естественных науках: Материалы XXXI Всероссийской школы-конференции. Пермь, 2022. С. 268–270.
- 17. Романов К.А. Модификация двухуровневой конститутивной модели поликристаллической меди для описания измельчения зеренной структуры и результаты ее применения для исследования равноканального углового прессования / К.А. Романов, А.И. Швейкин, П.В. Трусов // XXIII Зимняя школа по механике сплошных сред: Тезисы докладов (Пермь, 13-17 фев. 2023 г.) / ПФИЦ УрО РАН. Пермь, 2023. С. 290.
- 18. Швейкин А.И. О комплексной численной оценке устойчивости многоуровневых конститутивных моделей материалов / А.И. Швейкин, П.В. Трусов, К.А. Романов // XXIII Зимняя школа по механике сплошных сред: Тезисы докладов (Пермь, 13-17 фев. 2023 г.) / ПФИЦ УрО РАН. Пермь, 2023. С. 371.
- 19. Романов К.А. Модифицированная двухуровневая статистическая конститутивная модель: описание измельчения зеренной структуры меди при равноканальном угловом прессовании / К.А. Романов, А.И. Швейкин, П.В. Трусов // Тезисы докладов Международной конференции «Физическая мезомеханика. Материалы с многоуровневой иерархически организованной структурой и интеллектуальные производственные технологии» (Томск, 11-14 сент. 2023 года). Томск, 2023. С. 324–325.
- 20. Швейкин А.И. Комплексная оценка устойчивости многоуровневых конститутивных моделей материалов / А.И. Швейкин, П.В. Трусов, К.А. Романов // Тезисы докладов Международной конференции «Физическая мезомеханика. Материалы с многоуровневой иерархически организованной структурой и интеллектуальные производственные технологии» (Томск, 11-14 сент. 2023 года). Томск, 2023. С. 345.

- 21. Романов К.А. Описание процесса измельчения зеренной структуры меди с помощью двухуровневой конститутивной модели / К.А. Романов, А.И. Швейкин, П.В. Трусов // Математическое моделирование в естественных науках: Материалы XXXII Всероссийской конференции. Пермь, 2023. С. 280–282.
- 22. Романов К.А. Многоуровневое моделирование изменения зеренной структуры при технологических процессах обработки металлов / К.А. Романов, А.И. Швейкин, П.В. Трусов // XVIII Международная конференция «Механика, ресурс и диагностика материалов и конструкций»: сб. материалов (Екатеринбург, 27-31 мая 2024 г.). Екатеринбург, 2024. С. 121.
- 23. Романов К.А. Многоуровневое моделирование измельчения зеренной структуры металлов при технологических процессах обработки / К.А. Романов, А.И. Швейкин, П.В. Трусов // Тезисы докладов Международной конференции «Физическая мезомеханика. Материалы с многоуровневой иерархически организованной структурой и интеллектуальные производственные технологии» (Томск, 9-12 сент. 2024 года). Томск, 2024. С. 292–293.
- 24. Романов К.А. Модифицированная двухуровневая статистическая конститутивная модель: описание измельчения зерен в технологических процессах обработки металлов и сплавов / К.А. Романов, А.И. Швейкин, П.В. Трусов // Математическое моделирование в естественных науках: Материалы XXXII Всероссийской конференции. Пермь, 2024. С. 345–348.
- 25. Романов К.А. Многоуровневые конститутивные модели: модификация для описания измельчения зерен в технологических процессах обработки металлов / К.А. Романов, А.И. Швейкин, П.В. Трусов // XXIV Зимняя школа по механике сплошных сред: Тезисы докладов (Пермь, 24-28 фев. 2025 г.) / ПФИЦ УрО РАН. Пермь, 2025. С. 240.
- 26. Романов К.А. Применение многоуровневой конститутивной модели для описания измельчения зерен в технологических процессах обработки металлов / К.А. Романов, А.И. Швейкин // Тезисы докладов X Всероссийской

конференции «Лаврентьевские чтения по математике, механике и физике» (Новосибирск, 25-29 авг. 2025 г.). – Новосибирск, 2025. – С. 228.

6. Соответствие содержания диссертации специальности, по которой она рекомендуется к защите.

«Многоуровневые конститутивные неупругого Диссертация модели деформирования металлов с описанием измельчения зеренной структуры» Романова Кирилла Андреевича соответствует паспорту специальности 1.2.2. Математическое моделирование, численные методы и комплексы программ по физико-математическим наукам, а именно пунктам: 1. Разработка новых математических методов моделирования объектов и явлений; 2. Разработка, обоснование и тестирование эффективных вычислительных методов применением современных компьютерных технологий; 3. Реализация эффективных численных методов и алгоритмов в виде комплексов проблемноориентированных программ для проведения вычислительного эксперимента; 8. Комплексные исследования научных и технических проблем с применением современной технологии математического моделирования и вычислительного эксперимента.

7. Соответствие диссертационной работы требованиям п. 14 «Положения о присуждении ученых степеней».

«Многоуровневые Кирилла Андреевича Диссертация Романова конститутивные модели неупругого деформирования металлов с описанием научной специальности 1.2.2. структуры» ПО измельчения зеренной Математическое моделирование, численные методы и комплексы программ на соискание ученой степени кандидата физико-математических наук отвечает степеней», присуждении ученых «Положения 14 O п. утвержденного Постановлением Правительства Российской Федерации от 24.09.2013 № 842, предъявляемым к кандидатским диссертациям: автор в тексте диссертации корректно ссылается на авторов и источники заимствования материалов, а при использовании результатов научных работ, выполненных соискателем лично и (или) в соавторстве, отмечает в диссертации это обстоятельство.

Диссертация «Многоуровневые конститутивные модели неупругого деформирования металлов с описанием измельчения зеренной структуры» Романова Кирилла Андреевича рекомендуется к защите на соискание ученой степени кандидата физико-математических наук по научной специальности 1.2.2. Математическое моделирование, численные методы и комплексы программ.

Заключение принято на заседании кафедры «Математическое моделирования систем и процессов». Присутствовало на заседании 18 чел. Результаты голосования: «за» — 18 чел., «против» — 0 чел., «воздержалось» — 0 чел., протокол № 2 от «12» сентября 2025 г.

Трусов Петр Валентинович,

и.о. зав. кафедрой «Математическое моделирование систем и процессов» Федерального государственного автономного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет»

Няшина Наталья Дмитриевна,

секретарь кафедры «Математическое моделирование систем и процессов» Федерального государственного автономного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет»