УТВЕРЖДАЮ

Проректор по науке и инновациям Пермского национального

исследовательского

ческого университета,

э мат. наук, доцент

Швейкин А.И.

emed per 2025 r.

ЗАКЛЮЧЕНИЕ

OBAHHA POCCHAC

федерального государственного автономного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет» Министерства науки и высшего образования Российской Федерации

Диссертация «Оптическая система передачи энергии для электропитания маломощных датчиков и измерительных комплексов (система PoF)» выполнена на кафедре «Общая физика».

В период подготовки диссертации соискатель Гаркушин Алексей Алексеевич работал в федеральном государственном автономном образовательном учреждении высшего образования «Пермский национальный исследовательский политехнический университет», на кафедре Общая физика в должности(ях) ассистента и научного сотрудника.

В 2009 году окончил государственное образовательное учреждение высшего профессионального образования «Пермский государственный технический университет» по специальности «Проектирование и технология радиоэлектронных средств».

В 2025 году окончил аспирантуру очной формы обучения федерального государственного автономного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет» по специальности «Оптические и оптико-электронные приборы и комплексы» (2.2.6) (период обучения «01» октября 2021 г. по «30» сентября 2025 г.).

Научный руководитель – доктор физико-математических наук, профессор Криштоп Виктор Владимирович, является профессором кафедры «Общая физика».

1. <u>Личное участие автора в получении результатов, изложенных в диссертации, заключается в следующем:</u>

Гаркушин A.A. являлся ключевым исполнителем инициатором И исследований в рамках исследовательской работы. Его личный вклад является определяющим и включает: формулировку ключевых идей и постановку задач исследования; руководство разработкой структурной и принципиальной схем системы PoF: создание И верификацию цифрового двойника фотоэлектрического преобразователя в среде MATLAB Simulink; разработку и реализацию оригинального поискового алгоритма адаптивного управления системой; координацию работ по математическому компьютерному моделированию процессов распространения излучения оптимизации конструкций гомогенизатора и узла коррекции апертуры; непосредственное участие в проведении натурных экспериментов и анализе полученных данных; инициирование и основную работу по подготовке заявок на получение патентов на изобретение и полезную модель; подготовку основных публикаций по результатам исследований.

Соисследователи участвовали в обсуждении результатов, проведении экспериментов и технической реализации отдельных узлов системы под руководством и при непосредственном участии соискателя. Гаркушин А.А. продемонстрировал способность к эффективной организации работы

исследовательской группы, глубокое владение методологией и успешную координацию коллектива для достижения поставленных научных целей.

- 2. <u>Научная новизна диссертационного исследования</u> <u>заключается в следующем:</u>
- •Впервые разработан метод управления системой РоГ на основе широтноимпульсной модуляции тока накачки лазерного диода для оптимально подобранных сопротивлений нагрузки, позволивший повысить КПД системы в области малых мощностей.
- •Впервые создан и применен верифицированный цифровой двойник модулей ФЭП, функционирующий на основе паспортных данных и позволяющий с высокой точностью прогнозировать их энергетические характеристики без проведения натурных экспериментов.
- •Впервые для систем энергоснабжения по оптическому волокну предложен и внедрен поисковый алгоритм нахождения оптической мощности лазерного диода, обеспечивающий адаптивное оптимальное регулирование при динамически изменяющейся нагрузке.
- •Впервые разработана методика сквозного сопряженного проектирования и предложена численная модель узла коррекции апертуры на основе линзованного волокна для входа модуля ФЭП, обеспечивающая существенное улучшение ключевых характеристик модуля.

3. Степень достоверности результатов проведенных исследований

Достоверность результатов обеспечена применением современных методов математического и компьютерного моделирования (MATLAB Simulink, COMSOL), корректным использованием методов математического анализа и электромагнитной теории света. Теоретические выводы и результаты моделирования подтверждены натурными экспериментами на разработанных макетах и опытных образцах. Расхождение между результатами моделирования и экспериментальными данными не превышает 3-5% для различных режимов работы, что свидетельствует о высокой адекватности разработанных моделей.

Основные положения и выводы работы прошли апробацию на ряде международных и всероссийских научных конференций и получили положительную оценку научного сообщества.

4. <u>Практическая и теоретическая значимость диссертационного исследования</u>

Практическая значимость заключается в следующем: разработанные технические решения (метод ШИМ-управления, алгоритм поиска оптимальной мощности, конструкции модулей ФЭП) позволяют существенно (до 6-7%) повысить энергетическую эффективность систем РоГ, что актуально для питания датчиков в взрыво- и пожароопасных средах, на объектах с повышенными требованиями к электромагнитной совместимости. Разработанная универсальная модель цифрового двойника ФЭП сокращает трудозатраты и время на проектирование подобных систем. Конструкции модуля ФЭП защищены патентами и готовы к внедрению.

Теоретическая значимость работы состоит в развитии методов математического моделирования и оптимизации оптико-электронных систем передачи энергии, создании новых моделей и алгоритмов управления, углублении понимания процессов преобразования оптической энергии в электрическую в полупроводниковых структурах при лазерном облучении.

5. Полнота изложения материалов диссертации в работах, опубликованных соискателем

Основные научные результаты диссертации полностью отражены в опубликованных соискателем работах. По теме диссертации опубликовано 14 научных работ, в том числе 4 работы в ведущих рецензируемых журналах, входящих в Перечень ВАК и индексируемых в международных базах цитирования Web of Science и Scopus. Получены 1 патент на изобретение и 1 патент на полезную модель. Основные положения и результаты работы представлены автором в следующих ключевых публикациях:

Гаркушин, А. А., Криштоп, В. В., Вольхин, И. Л., Расулев, Р. П., Нифонтова, Е. В., Кадочиков, И. В., ... & Шевцов, Д. И. (2024). Прототип системы мониторинга с энергоснабжением по оптическому волокну. Известия высших учебных заведений. Приборостроение, 67(1), 80-95. (ВАК). Личный вклад автора - 25%.

Garkushin, A. A., Krishtop, V. V., Storozhev, S. A., Volkhin, I. L., Nifontova, E. V., Urbanovich, E. V., ... & Kadochikov, I. V. (2024). Intelligent Power Supply System with Power Transmission via Optical Fiber. Bulletin of the Russian Academy of Sciences: Physics, 88(6), 986-990. (Scopus). Личный вклад автора - 20%.

Garkushin, A. A., Zhukov, L. O., Ponomarev, R. S., Pankov, A. S., Volkhin, I. L., Maksimenko, V. A., & Krishtop, V. V. (2024). Photovoltaic Converter with Aperture Correction for Power-over-Fiber Systems. Bulletin of the Russian Academy of Sciences: Physics, 88(Suppl 3), S361-S369. (Scopus). Личный вклад автора - 20%.

Garkushin, A. A., Krishtop, V. V., Storozhev, S. A., Volkhin, I. L., Nifontova, E. V., Urbanovich, E. V., ... & Kadochikov, I. V. (2024, February). DIGITAL TWIN OF THE PHOTOELECTRIC CONVERTER OF THE POWER TRANSMISSION SYSTEM OVER OPTICAL FIBER. In Journal of Physics: Conference Series (Vol. 2701, No. 1, p. 012146). IOP Publishing. (Scopus). Личный вклад автора - 25%.

6. Соответствие содержания диссертации специальности, по которой она рекомендуется к защите

Содержание диссертационной работы Гаркушина А.А. полностью соответствует паспорту научной специальности 2.2.6 «Оптические и оптико-электронные приборы и комплексы». Исследования непосредственно относятся к направлениям 1 (разработка новых методов создания оптико-электронных систем), 2 (разработка новых оптико-информационных технологий на основе волоконной оптики), 3 (исследование оптико-электронных приборов методами компьютерного моделирования) и 12 (разработка комплексов для измерения физических величин и передачи информации). Тематика работы находится в

области создания перспективных приборов и систем фотовольтаики и оптической передачи энергии.

7. <u>Соответствие диссертационной работы требованиям, «Положения о присуждении ученых степеней».</u>

Диссертация ФИО отвечает требованиям п. 9-11, 13, 14 «Положения о присуждении ученых степеней» постановления Правительства Российской Федерации от 24.09.2013 № 842, предъявляемым к кандидатским диссертациям.

Диссертация «Оптическая система передачи энергии для электропитания маломощных датчиков и измерительных комплексов (система PoF)» Гаркушина Алексея Алексеевича рекомендуется к защите на соискание ученой степени кандидата технических наук по специальности 2.2.6. Оптические и оптико-электронные приборы и комплексы.

Заключение принято на заседании кафедры _Общая физика_.

Присутствовало на заседании <u>₹</u>2 чел. Результаты голосования: «за» - <u>₹</u>2 чел., «против» - <u>О</u> чел., «воздержалось» - <u>О</u>, протокол №2 от «17» сентября 2025г.

Заведующий кафедрой д.физ.-мат.н., профессор

X подпись

ΦИО

Секретарь кафедры

подпись ФИО