ООО «НОВА-Брит»

127566, г. Москва, Алтуфьевское шоссе, д. 44 Тел./факс: 8 (495) 139-13-89, e-mail: nova-brit@gazprom-neft.ru

УТВЕРЖДАЮ
Генеральный директор
ООО «НОВА-Брит»

_____ Н.А. Бондарь

«___» ____ 20___ г.

TOM OBOC

по проекту технической документации на новую технологию «Устройство конструктивных слоев дорожной одежды автомобильных дорог или иных транспортных сооружений с применением строительного грунта «БРИТ»

КНИГА 2 МАТЕРИАЛЫ АПРОБАЦИИ

N N			Москва 2020										
Поли		Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	2020/070-0	ВОС				
поп	ì	ГИП	•		•			«	Стадия	Лист	Листов		
5		Разра	ю.	Сакае	ва								
Инв N <u>o</u>		Н.кон	тр.							ПНИП	ĮУ		
Z													

СОДЕРЖАНИЕ ТОМА

Обозначение	Наименование	Примечание
2020/070-OBOC	Предварительная ОВОС	Книга 1
2020/070-OBOC	Материалы апробации	Книга 2.

Лист — — — — — — — — — — — — — — — — — — —	Взаи. инв. №							
	Подп. и дата							
🕱 Изм. Кол.уч Лист № док. Подп. Дата	Инв. № подл.	Изм	Кол уч	Лист	No nok	Подп.	Дата	Лист

ТОМ «Материалы апробации» разработан по договору № 2020/070 с ООО «НОВА-Брит» в соответствии с Техническим заданием.

Объект исследования:

- Экспериментальный участок № 1. Внутрипромысловая дорога на Крайнем месторождении, размещается в границах земельного отвода АО «Газпромнефть Ноябрьскнефтегаз» (до 2019 года филиал «Газпромнефть-Муравленко»). Исследуемый участок автодороги расположен на территории Ямало-Ненецкого автономного округа, Пуровского района. Общая длина участка дороги составляет 1 км.
- Экспериментальный участок № 2. Участок подъездной автодороги к кусту скважин №80 (инв. №10202636) на территории Приобского Месторождения (южная часть), размещается в границах земельного отвода ООО «Газпромнефть-Хантос». Исследуемый участок расположен на территории Ханты-Мансийский автономный округ Югра, Ханты-Мансийский района. Общая длина участка дороги составляет 7 км.

С целью подтверждения соответствия продукции требованиям ТУ 23.99.13.123-015-77310225-2020 «Строительный грунт «БРИТ» были проведены лабораторные исследования полученного строительного грунта «БРИТ» и проанализированы результаты его использования. Проведен экологический мониторинг окружающей природной среды в процессе проведения работ по устройству конструктивных слоев указанных участков автодороги.

На основе проведенных экспериментальных исследований получены данные о возможности использования технологии укрепленных грунтов для устройства конструктивных слоев автомобильных дорог нефтегазовых месторождений. Определены композиции строительного грунта «БРИТ» и соотношения входящих компонентов: грунта, шлама бурового, комплексного органоминерального вяжущего.

<i>\\≌ подл.</i>	Подп. и дата	B3

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ5
1. ОБЩИЕ СВЕДЕНИЯ О РАЙОНАХ ПРОВЕДЕНИЯ РАБОТ7
1.1 Экспериментальный участок № 1 (Крайнее месторождение)
1.2 Экспериментальный участок № 2 (Приобское месторождение (южная часть)). 12
2. ТЕХНОЛОГИЯ ПРОВЕДЕНИЯ РАБОТ
2.1 Экспериментальный участок № 1 (Крайнее месторождение)
2.2 Экспериментальный участок № 2 (Приобское месторождение (южная часть)). 25
3. ИЗУЧЕНИЕ ХАРАКТЕРИСТИК СТРОИТЕЛЬНОГО ГРУНТА «БРИТ»
3.1 Лабораторный контроль строительного грунта «БРИТ» Крайнего
месторождения
3.2 Лабораторный контроль строительного грунта «БРИТ» Приобского
месторождения (южная часть)
4. УСТАНОВЛЕНИЕ ОТСУТСТВИЯ (НАЛИЧИЯ) ВОЗДЕЙСТВИЯ НА
КОМПОНЕНТЫ ОКРУЖАЮЩЕЙ СРЕДЫ НОВОЙ ТЕХНОЛОГИИ ПО
УСТРОЙСТВУ КОНСТРУКТИВНЫХ СЛОЕВ ДОРОЖНОЙ ОДЕЖДЫ
АВТОМОБИЛЬНЫХ ДОРОГ ИЛИ ИНЫХ ТРАНСПОРТНЫХ СООРУЖЕНИЙ С
ПРИМЕНЕНИЕМ СТРОИТЕЛЬНОГО ГРУНТА «БРИТ»
4.1 Методика проведения полевых работ на Крайнем месторождении
4.1.1 Отбор проб поверхностных и подземных вод
4.1.2 Отбор проб донных отложений
4.1.3 Отбор проб почвенного покрова
/Ι / Εικοποριμισομέση ομομικό οργαμέτου ομουνισμομίσμε ομοπίτ μο Κασμμονί
4.2 Экологическая оценка объектов окружающей среды на Крайнем
месторождении
месторождении
месторождении
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ». 49
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ» 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная
месторождении
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ» 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ». 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ» 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.3.3 Отбор проб почвенного покрова. 51
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ» 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.3.3 Отбор проб почвенного покрова. 51 4.4 Экологическая оценка объектов окружающей среды Приобского
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ» 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.3.3 Отбор проб почвенного покрова. 51
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ» 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.3.3 Отбор проб почвенного покрова. 51 4.4 Экологическая оценка объектов окружающей среды Приобского месторождения (южная часть) 52
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ». 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.3.3 Отбор проб почвенного покрова. 51 4.4 Экологическая оценка объектов окружающей среды Приобского месторождения (южная часть) 52 4.4.1 Экологическая оценка состояния поверхностных вод. 52 4.4.2 Экологическая оценка состояния донных отложений 57 4.4.3 Экологическая оценка состояния почвенного покрова 60
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ». 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.3.3 Отбор проб почвенного покрова. 51 4.4 Экологическая оценка объектов окружающей среды Приобского месторождения (южная часть). 52 4.4.1 Экологическая оценка состояния поверхностных вод. 52 4.4.2 Экологическая оценка состояния поверхностных вод. 57 4.4.3 Экологическая оценка состояния почвенного покрова. 60 4.4.4 Экологическая оценка состояния почвенного покрова. 60 4.4.4 Экологическая оценка состояния подземных вод. 63
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ». 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.3.3 Отбор проб почвенного покрова. 51 4.4 Экологическая оценка объектов окружающей среды Приобского месторождения (южная часть) 52 4.4.1 Экологическая оценка состояния поверхностных вод. 52 4.4.2 Экологическая оценка состояния донных отложений 57 4.4.3 Экологическая оценка состояния почвенного покрова 60 4.4.4 Экологическая оценка состояния почвенного покрова 60 4.4.5 Анализ строительного грунта «БРИТ». 66
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ». 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.4 Экологическая оценка объектов окружающей среды Приобского месторождения (южная часть) 52 4.4.1 Экологическая оценка состояния поверхностных вод 52 4.4.2 Экологическая оценка состояния донных отложений 57 4.4.3 Экологическая оценка состояния почвенного покрова 60 4.4.4 Экологическая оценка состояния подземных вод 63 4.4.5 Анализ строительного грунта «БРИТ» 66 3АКЛЮЧЕНИЕ 67
месторождении 38 4.2.1 Экологическая оценка состояния поверхностных вод. 38 4.2.3 Экологическая оценка состояния донных отложений. 40 4.2.5 Экологическая оценка состояния почвенного покрова. 44 4.2.7 Экологическая оценка состояния подземных вод. 47 4.2.9 Анализ строительного грунта «БРИТ». 49 4.3 Методика проведения полевых работ на Приобском месторождении (южная часть) 50 4.3.1 Отбор проб поверхностных и подземных вод. 50 4.3.2 Отбор проб донных отложений 51 4.3.3 Отбор проб почвенного покрова. 51 4.4 Экологическая оценка объектов окружающей среды Приобского месторождения (южная часть) 52 4.4.1 Экологическая оценка состояния поверхностных вод. 52 4.4.2 Экологическая оценка состояния донных отложений 57 4.4.3 Экологическая оценка состояния почвенного покрова 60 4.4.4 Экологическая оценка состояния почвенного покрова 60 4.4.5 Анализ строительного грунта «БРИТ». 66

т. Подп. и дата Взаи. инв. №

Инв. № подл.

Изм. Кол.уч Лист № док.

Подп.

Дата

2020/070-0BOC

Технология описана в Технологическом регламенте на проведение работ «Устройство конструктивных слоев дорожной одежды автомобильных дорог или иных транспортных сооружений с применением строительного грунта «БРИТ».

Прокладка промысловых дорог в России в большинстве случаев ведется в сложных погодных и геологических условиях — на малосвязных, скальных или глинистых грунтах, в условиях вечной мерзлоты, в регионах с большой годовой амплитудой колебаний температур. Для создания безопасных и долговечных транспортных путей требуется современная спецтехника, использование новейших дорожно-строительных материалов и точное соблюдение технологии укладки материалов. Повышение эксплуатационной надежности внутрипромысловых дорог на основе применения новых технологий и материалов является актуальной темой исследований как с научной, так и с практической точек зрения.

В настоящее время в России построено и эксплуатируется свыше 30 тыс. км дорог, где использованы укрепленные грунты для строительства дорожных оснований и покрытий. Во всем мире площадь конструктивных слоев из укрепленных грунтов на дорогах и аэродромах превышает 3 млрд. м². Таким образом, широкое применение методов укрепления грунтов в дорожном строительстве является не отдаленной перспективой, а совершившимся фактом.

При разработке любых методов укрепления грунтов должно максимально учитываться влияние окружающих природных условий (геологии, климата, растительности и т. д.). Найти правильное решение в выборе применяемых методов

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Взаи. инв.

Подп. и дата

и веществ, преобразующих первоначальные свойства грунта, можно на основе познания грунтов, изучаемых методами, установившимися в инженерной геологии и грунтоведении.

Для транспортного строительства наибольший практический интерес представляют методы так называемого поверхностного укрепления, которые, как правило, связаны с нарушением естественной структуры и сложения грунта, с тщательным измельчением агрегатов грунта и принудительным перемешиванием с вяжущими и другими реагентами. Важная особенность методов поверхностного укрепления грунтов – обязательное максимальное уплотнение готовых смесей при соответствующей оптимальной влажности.

С целью повышения транспортной доступности нефтяных месторождений компанией ООО «НОВА-Брит» разработана новая технология по устройству конструктивных слоев дорожной одежды автомобильных дорог или иных транспортных сооружений, а также площадных объектов с применением строительного грунта «БРИТ».

Взаи. инв. №	
Подп. и дата	
Інв. № подл.	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

— Экспериментальный участок № 1. Внутрипромысловая дорога на Крайнем месторождении, размещается в границах земельного отвода АО «Газпромнефть — Ноябрьскнефтегаз» (до 2019 года филиал «Газпромнефть-Муравленко»). Исследуемый участок автодороги расположен на территории Ямало-Ненецкого автономного округа, Пуровского района, Крайнего месторождения «Примыкание КУСТА №76 - КУСТ №76» (инв. № 87453017). Протяженность участка составила - 1 км.

- Экспериментальный участок № 2. Участок подъездной автодороги к кусту скважин №80 (инв. №10202636) на территории Приобского Месторождения (южная часть) и размещается в границах земельного отвода ООО «Газпромнефть-Хантос». Исследуемый участок расположен на территории Ханты-Мансийский автономный округ - Югра, Ханты-Мансийский района. Общая длина участка дороги составляет 7 км.

1.1. Экспериментальный участок № 1 (Крайнее месторождение)

Территориально экспериментальный участок автодороги расположен на Крайнем нефтяном месторождении, которое расположено в пределах Пуровского района Ямало-Ненецкого автономного округа Тюменской области. Ближайшими нефтяными месторождениями являются: Суторминское — в 8 км к востоку, Карамовское 35 км к северо-западу, Муравленковское, Холмогорское. Площадь лицензионного участка составляет 393,3 км2. Ближайший населенный пункт — г. Муравленко расположен в 20 км к северо-востоку от участка.

Месторождение расположено на левобережье широтного течения реки Пякупур — левого притока реки Пур. Гидрографическая сеть представлена бассейном реки Пякупур и ее притоками. Берега рек обрывистые, залесенные. Большая часть территории занята открытыми болотами, старицами и озерами, глубиной не более 3-х метров. Рельеф местности представляет собой слабо возвышенное холмистое плато, прорезанное сетью долин и небольших рек. Грунт промерзает на открытых участках до 3-х метров. Географически район расположен в пределах северного склона Сибирских увалов в долине реки Пякупур. Район расположен в области развития современной и древней мерзлоты.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Взаи. инв. №

Подп. и дата

Толщина ее верхнего слоя от 1 до 50 метров. В непосредственной близости от месторождения проходит трасса газопровода Уренгой – Челябинск – Новополоцк и нефтепровод Холмогорское – Федоровское – Сургут – Омск. Электроснабжение месторождения и города осуществляется от Сургутской ГРЭС.

Особо охраняемые природные территории федерального и регионального значения, в границах лицензионного участка, отсутствуют.

Климатические условия

Климат данного района резко континентальный. Зима суровая, холодная, продолжительная. Лето короткое, теплое. Короткие переходные сезоны - осень и весна.

Среднегодовая температура воздуха - -6,5°С, средняя температура воздуха наиболее холодного месяца января - -25,1°С, а самого жаркого июля - 21,2°С. Температура наиболее холодной пятидневки 98 % обеспеченности составляет - 48°С. Абсолютный минимум температуры приходится на февраль - -50,0°С, абсолютный максимум - на июнь-июль - +30,0°С.

Осадков в районе выпадает много, особенно в теплый период с апреля по октябрь, годовая сумма осадков - 584 мм. В теплый период с апреля по октябрь выпадает 428 мм, за холодный период с ноября по март - 156 мм. Средняя относительная влажность воздуха в течение года изменяется от 68% в июне до 86% в октябре.

Снежный покров образуется в начале октября, сходит - в конце мая. Сохраняется снежный покров примерно 224 дня. Средняя, из наибольших декадных высот снежного покрова, за зиму на защищенных участках составляет 72 см, а на открытых - 50 см.

Преобладающее направление ветра зимой южное, летом – северо-западное. В целом за год преобладают ветры северо-западного направления. Среднегодовая скорость ветра - 3,7 м/с.

Геологическое строение и рельеф

В геоморфологическом отношении район работ расположен в пределах Западно-Сибирской равнины. На поверхности рельеф местности осложнен небольшими поднятиями, образующимися возвышенностями Сятты (с высотой до 120 м над уровнем моря) на западе, Сибирские Увалы (до 155 м) на юге и Пур-

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Тазовскую (около 200 м) на востоке. К северу от Сибирских Увалов до Тазовской губы простирается Пуровская низменность, приподнятая на 5-25 м над уровнем моря. На всей территории района - многолетняя мерзлота.

В центральной части простирается зона многолетнемерзлых пород двухслойного строения, за верхним мерзлым слоем (60-80 м) следуют талые породы, которые на глубине около 150 м вновь сменяются многолетнемерзлыми.

Основными действующими экзогенными процессами на территории Крайнего месторождения являются морозобойное растрескивание, термоэрозия термоабразия. Локально развиты дефляция, термокарст. Морозобойное растрескивание развито практически повсеместно. Наиболее подвержены этому процессу прибровочные участки водоразделов, с которых сдувается снег. По всей территории округа широко распространены формы рельефа, связанные с мерзлотными процессами. При вытаивании льдистых грунтов образовались провальные озера, котловины оседания, просадочные западины, ложбины. Бугры мерзлотного пучения обычно имеют высоту 3-5 м, реже их высоты достигают 15-20 м. Они хорошо различимы над плоской безлесной тундрой за несколько километров. Наиболее крупные бугры - гидролакколиты достигают высоты 25-30 м.

Гидрография

Основными водотоками на территории Крайнего месторождения является река Котутаяха, протекающая вдоль западной границы ЛУ и ее левый приток - река Ехтынъяха, а также два левых притока реки Пякупур - р. Екусяяха и р. Немятъяха. Все водотоки относятся к бассейну реки Пякупур. Река Котутаяха - транзитная, а реки Ехтынъяха, Екусяяха и Немятъяха берут начало на территории Крайнего месторождения.

Основным источником питания являются зимние осадки, которые формируют 46% годового стока. Половодье начинается в мае и заканчивается во второй половине июня - июле. Средняя продолжительность его свыше 2 месяцев - с 10 - 15 мая до 15 - 20 июля. В летне-осеннюю межень обычны дождевые паводки. Самый многоводный месяц - июнь, самые маловодные - февраль, март и апрель.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Территория экспериментального участка дороги относится к зоне избыточного увлажнения, особенностью которой является широкое распространение болотных отложений. Болота наблюдаются на водораздельных плато, на речных и озерных террасах, в поймах водотоков. По характеру растительного покрова и структурным особенностям болотных отложений они относятся к сфагново-кустарничково-сосновому, травяно-моховому и грядовомочажинному типам.

Территория месторождения в значительной степени заозерена.

По происхождению котловин большинство озер органогенные. Это болотные (внутриболотные) озерки и озера площадью до 1,5 км2. Кроме органогенных озер распространены термокарстовые, образовавшиеся в местах протаивания многолетнемерзлых пород (аласные озера, хасыреи). Озера имеют разную форму (круглые, округлые, овальные), размеры и небольшие глубины (до 5 м). Наиболее крупные озера - Тямпто, Екусято, Хадытато, Йемятто, Куйкуяхато.

Почвенный покров

В системе почвенно-географического районирования территория месторождения принадлежит к Нижнеобской провинции болотных и глееслабоподзолистых почв подзоны глееподзолистых и подзолистых иллювиальногумусовых почв северной тайги.

На свободной от болот территории месторождения, почвенный покров образован различными родами подзолов (главным образом, иллювиальногумусово-железистые, иллювиально-железистые языковатые и карманистые, псевдофибровые глубинно-глеевые). Наиболее распространены породы легкого механического состава (пески, супеси) на которых развиты иллювиальножелезистые подзолы, являющиеся зональным типом почв.

В связи с широким распространением процессов заболачивания, значительные площади территории исследования заняты болотными почвами. На надпойменных террасах представлены торфяные олиготрофные почвы, в поймах рек - аллювиальные болотные и болотные низинные обедненные торфяные почвы. В прирусловых частях долин таежных речек встречаются

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

сухоторфянистые почвы на мерзлом торфе. Основная часть пойм крупных рек, свободная от болот занята своеобразными аллювиальными таежными почвами.

Выделяются следующие основные типы почв:

- Подзолы автоморфные;
- Подзолы полугидроморфные;
- Торфяно-подзолы;
- Болотные верховые;
- Болотные низинные и переходные;
- Пойменные почвы.

Растительный и животный мир

Растительный покров территории Крайнего лицензионного разнообразен. К повышенным участкам плоских довольно водоразделов приурочены ивняковые ерники и ольшаники с хорошо развитым злаковоразнотравным травостоем. Растительность лесотундровой зоны представлена лиственничными редколесьями, которые приурочены к речным долинам, наиболее хорошо дренируемым участкам склонов, надпойменным террасам. Почти везде в рединах и редколесьях встречаются вкрапления ели и березы. Широко распространены растительные комплексы грядово-мочажинных болот и заболоченных редкостойных елово-лиственничных лесов.

Светлохвойные леса и редколесья, представленные сосноволишайниковыми и кустарничково-лишайниковыми сообществами, преобладают среди лесных биоценозов и занимают относительно дренированные плоские участки водоразделов.

В поймах рек произрастают темнохвойные леса с доминированием ели сибирской, кедра сибирского и березы. Подлесок представлен рябиной, ивой, березой, черемухой. Кустарнички встречаются рассеянно, местами преобладают линея и брусника.

Доминантом травяного яруса выступает вейник лангсдорфа с таежным мелкотравьем.

В пойменных березовых, ивово-березовых и ивовых сообществах малых рек доминируют береза и ива. Подлесок различной густоты образован ивой, березой, рябиной. Кустарнички отсутствуют; в травяном ярусе доминирует вейник

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Центральные части водораздельных равнин заняты плоскобугристыми заозерными безлесными кустарничково-зеленомошно-лишайниковыми торфяниками, которые являются одними из зональных болот северотаежной подзоны. Изредка на буграх встречаются отдельные угнетенные деревья ведра, березы, сосны. Преобладают кустарнички багульника болотного и березы карликовой, присутствует брусника. В понижениях по сырым местам появляются подбел и черника. Травянистые растения представлены морокой, росянкой круглолистной. Бугры образованы перепревшим сфагнумом. В мочажинах и по берегам озер господствуют осоки, гидрофильное разнотравье, сфагновые и зеленые мхи.

Животный мир описываемой территории довольно разнообразен.

На рассматриваемой территории встречаются белка, заяц-беляк, бурый медведь, волк, лисица, горностай, соболь и др. Из насекомоядных - крот, землеройка, еж; из рукокрылых - обыкновенный ушан, серая летучая мышь. Из птиц - утки, гуси, бекасы, дупели, кроншнепы, кулики и др. Обитают здесь и ястреб-тетеревятник, беркут, мохноногий канюк, орлан-белохвост. Из пресмыкающихся и пресноводных - серая жаба, живородящая ящерица.

В пресных водах обитают 36 видов рыб, из которых 26 являются промысловыми. По биологии рыбы разделяются на три формы - полупроходные, разноводные и туводные. Ареал полупроходных рыб включает реки с притоками и предустьевую опресненную зону - это преимущественно сиговые. Разноводная форма рыб, обитающих как в пресных, так и в солоноватых водах, представлена колюшкой, корюшкой. Туводные рыбы - это обитатели пресных вод, не совершающие длительных миграций, озерные (озерный гольян) и озерно-речные (щука, ерш, гольян, таймень, хариус), которые могут встречаться как в текучих, так и стоячих водах.

1.2 Экспериментальный участок N = 2 (Приобское месторождение (южная часть))

L						
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Особо охраняемые природные территории федерального и регионального значения, в границах лицензионного участка, отсутствуют.

Климатические условия

Климат района резко континентальный с продолжительной зимой и коротким теплым летом. Зима морозная и снежная. Самый холодный месяц года – январь (среднемесячная температура -19,5 градусов С). Абсолютный минимум -52 градуса С. Самым теплым является июль (среднемесячная температура +17 градусов С), абсолютный максимум +33 градуса С. Среднегодовое количество осадков 500-550 мм в год, причем 75% приходится на теплое время года. Снежный покров устанавливается во второй половине октября и продолжается до начала июня. Мощность снежного покрова от 0,7 м до 1,5-2 м. Глубина промерзания почвы 1-1,5м.

Рельеф

Приобское месторождение (южная часть) располагается в границах Среднеобской низменности. В геоморфологическом отношении участок недр разделен на две различные структурные единицы рекой Обь. Левобережная часть территории участка недр расположена В границах Обско-Иртышской равнинной слабодренированной среднетаежной области Салымско-Обской плоской террасовой болотно-таежной провинции. Рельеф левобережной части собой слаборасчлененную, плоскую, местами заболоченную равнину, спускающуюся к пойме реки Обь. Абсолютные отметки высот изменяются от 30 м до 50 м. Углы наклона поверхности составляют от 0.5° до 1.5° , отметки уреза воды до 32 м. Правобережная часть участка недр расположена в границах Кондинско-Ваховской среднетаежной области озерно-низинных болот Назым-Ляминской провинции плоских болотных и болотно-таежных равнин. Территория является переходной полосой между возвышенной расчлененной поверхностью Белогорского материка и заболоченной низиной Сургутского полесья. Абсолютные отметки высот изменяются от 40 до 110 м. Углы наклона поверхности составляют от 0.5° до 1.5° , отметки уреза воды до 54 м.

Изм. Кол.уч Лист № док. Подп. Дата

Подп. и дата

№ подл.

2020/070-0BOC

Основная часть территории сложена аллювиальными и озерноаллювиальными отложениями, представленными тонкозернистыми песками с отчетливо выраженной слоистостью и супесями, которые повсеместно перекрыты современными торфами.

Гидрография

Около 30% Приобского лицензионного участка расположено в пойме р.Обь. Гидрографическая сеть участка представлена системой рек, ручьев, озер, озерков и соединяющих их проток.

Главные водотоки месторождения: протока Салымская Обь, пересекающая южную часть участка в направлении с востока на запад, протока Неулева, а также протоки Нялинская, Северная и Лабытвор. Реки Евъега и Балинская пересекают участок с севера на юг. Средний годовой сток воды на данной территории составляет около 200-220 мм. Весенний сток составляет 69,6 % годового стока, за летне-осенний период проходит 19%, за зиму - 11% годового стока.

Река Обь разветвлена на протоки и рукава с наличием русла свободного меандрирования. Ширина Оби изменяется от 515 м до 1050 м, глубина - от 5,6 м до 11,4 м, скорость течения - 0,7 м/с. Дно песчаное.

Пойма Оби островного типа, почти 3 месяца залита полыми водами. После спада воды, из-за вязкости грунта, пойма непроходима до зарастания ее травой. К концу лета, вдоль сухих прирусловых участков, возможно движение колесного транспорта.

Озерки часто соединяются между собой, а также с реками многочисленными протоками и мелкими ручьями.

Гидрография района работ представлена рекой Еловой.

Река Еловая – левый приток р. Балинская. Длина реки Еловая без учета изгиба русла составляет 13 км. Русло в начале реки малоизвилистое, ближе к слиянию с рекой Балинская становится извилистой. Река имеет три левых притока – ручьи без названия.

Характеристика болот. Южная часть (пойменная) участка относится к Иртышско-Обскому пойменному району мелких массивов низинных травяных болот. В понижениях водоразделов и долинах малых рек преобладают небольшие по площади «рямы»: травянисто-моховые кочковатые болота с кустарничком,

I						
ŀ	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

поросшие угнетенной сосной и кедром. Глубина их 2 - 8 м. Зимой болота промерзают на 0,6 – 1,3 м, оттаивают с поверхности в мае, но слой льда под толстой моховой подушкой удерживает талые воды до июня. В июне-июле болота наиболее топки. Позднее их проходимость зависит от обилия дождей.

Характеристика озер. По условиям образования на участке присутствуют торфянико - болотные озера, расположенные на севере и юге территории, и Обь). Торфянико пойменные озерки (пойма реки болотные представляют собой озерки площадью не более 1 км2 (исключение озеро Кукушкино 2,9 км2), разбросанные среди болот. Большое количество небольших озер и озер-мочажин, разделенные торфяными грядами, не имеют определенной глубины: под тонким слоем темно-бурой воды – густеющая в глубину торфяная В пойме реки Обь расположены многочисленные пойменные Представляют собой мелководные озера-старицы, образованные в эрозионной и аккумулятивной деятельности рек. Обычно они вытянуты вдоль долины реки. Во время высоких половодий и дождевых паводков наполняются водой, маловодные же годы они частично ИЛИ полностью высыхают превращаются в небольшие озерки с низкими топкими берегами.

Почвенный покров

Согласно почвенно-географическому районированию, территория Ханты-Мансийского автономного округа относится к центральной таежно-лесной области Западно-Сибирской провинции подзолистых и болотных почв.

Формирование почвенного покрова определялось взаимодействием следующих факторов:

- механического состава почвообразующих пород;
- степенью дренированности;
- современными процессами заболачивания, поемности;
- избыточным увлажнением и ослабленным поверхностным и грунтовым стоком, определившим развитие процессов оглеения почв.

Изменение типов почв, в пространстве, довольно четко сопряжено со сменой рельефа, микроклимата, водного режима и растительности.

В районе проектируемых работ распространены следующие типы почв:

- среднеподзолистые почвы;

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

- дерново-глеевые легкосуглинистые почвы;
- мезотрофные болота;
- олиготрофные болота.

Растительный и животный мир

Согласно геоботаническому районированию район работ относится к таежной зоне болот.

Характерной особенностью таежной зоны является переувлажнение. Оно выражается не только в наличии обширных болотных массивов, но и в повышенной гидроморфности даже относительно хорошо дренируемых поверхностей. Это способствует формированию неоднородной и, весьма подвижной структуры, как отдельных сообществ, так и растительного покрова в целом.

Участок изысканий согласно Атласу XMAO расположен на территории мохово-лишайниковых плоско- и крупнобугристых и лишайниково-сфагновых олиготрофных северотаёжных болот.

На территории района изысканий распространены болотные системы Западно-Сибирской равнины Западно-Сибирской таежной области бореальноатлантических выпуклых олиготрофных моховых болот активного заболачивания и интенсивного торфонакопления среднетаежной болотной провинции олиготрофных грядово-мочажинных и сосново-кустаричково-сфагновых болот травяно-мохового И мохового типа (кустарничково-сфагновые, сфагновые, осоково-сфагновые, травяно-сфагновые), иногда облесённые сосной или березой.

Болотные виды растений представляют: шейхцерия болотная (Schenchzeria palustris), осока топяная (Carex limosa), очеретник белый (Rhyncospora alba), пушица рыжеватая (Eriophorum russeolum), пушица влагалищная (Eriophorum vaginatum), росянка круглолистная (Drosera rotundifolia), росянка длиннолистная (Drosera anglica), морошка (Rubuschamaemorus), осока струнокоренная (Carex chordorrhiza), голокучник трехраздельный (Gymnocarpium dryopteris), пушица многоколосковая (Eriophorum polystachyon).

Согласно зоогеографическому районированию Тюменской области территория района работ относится к среднетаежной подзоне зоны тайги и

					·
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

характеризуется преобладанием болотных комплексов, широким развитием вторично-производных мелколиственных лесов надпойменных террас пойменных комплексов р. Иртыш. По данным разных авторов животный мир в пределах территории лицензионного участка представлен более чем 30 видами млекопитающих (отряды: Грызуны (16 видов), Хищники видов), (14 Зайцеобразные (1), Парнокопытные (3), Насекомоядные (11), Рукокрылые (4)), 192 видами птиц (отряды: гусеобразные (24 вида), аистообразные (3), курообразные (5), поганкообразные (1), воробьинообразные (87), ржанкообразные (29), совообразные журавлеобразные (8),соколообразные (14),(7),кукушкообразные дятлообразные (6), гагарообразные (2), голубеобразные (2), козодоеобразные (1), стрижеобразные (1)), 2 видами пресмыкающихся и 4 видами земноводных.

В водных объектах, принадлежащих бассейну р. Иртыш в соответствии с промысловой ценностью подразделяются на следующие группы:

- •виды, внесенные в Красную Книгу, промысел которых запрещен осетр сибирский;
- особо ценные виды сиговые, в русле и в бассейне осуществляет нагул и нерест пелядь, а также нельма, муксун только нагул;
- •ценные виды язь, щука, судак, гольян речной в течение года в русле и пойме;
- •рыбы, имеющие местное промысловое значение и служащие объектами неорганизованного любительского лова елей сибирский, плотва сибирская, пескарь сибирский, окунь, ерш, налим, лещ восточный, которые встречаются в течение всего года в русле р. Иртыш и пойме.

В реках, принадлежащих бассейну р. Обь, рыбы в соответствии с промысловой ценностью подразделяются на следующие группы:

- ценные виды язь, щука в течение всего года в русле;
- •рыбы, имеющие местное промысловое значение и служащие объектами неорганизованного любительского лова елец сибирский, плотва сибирская, окунь, ерш, налим, которые встречаются в течение всего года в русле.

2.1. Экспериментальный участок № 1 (Крайнее месторождение)

Для апробации рецептуры строительного грунта «БРИТ» с использованием шламов буровых и технологии устройства основания методом ресайклирования был выбран опытный участок подъездной дороги на Крайнем месторождении, протяженностью 1,0 км - «Примыкание куста №76 — куст №76», Инв. 87453017. Работы проводились с июня по июль 2018 г. Расположение участка указано на рисунке 2.1

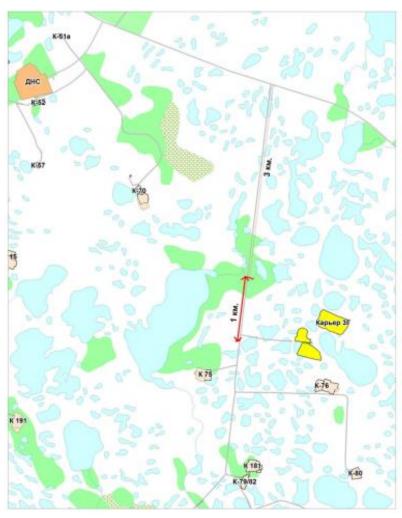


Рисунок 2.1 – Схема расположения строительства опытного участка

Работа по устройству слоя укреплённого грунта с применением ресайклера Wirtgen W2500 состояла из следующих операций:

- подготовительные работы (удаление препятствий с существующего покрытия насыпи, разбивочные работы, подготовка шлама бурового в шламовом амбаре);
 - транспортирование компонентов на участок строительства;

П	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

- распределение и планировка подготовленного шлама бурового;
- перемешивание песчаного грунта с обработанным шламом буровым за один проход рейсайклера;
- планировка смеси тяжелым автогрейдером и предварительное уплотнение грунтовым виброкатком, для обеспечения проезда цементораспределителя;
 - распределение цемента прицепным цементораспределителем;
- перемешивание компонентов в определенном соотношении по методу холодного ресайклинга с внесением битумной эмульсии (одновременно перемешивание песчаного грунта, шлама бурового, цемента и битумной эмульсии);
- предварительное уплотнение слоя грунтовыми катками, планировка слоя автогрейдером;
- окончательное уплотнение покрытия катком на пневмошинах до требуемого коэффициента уплотнения.

Подготовительные работы. Перед работами проводили разбивку участка по пикетам и закрепление поперечников для дальнейшего проведения работ. Очистка полосы практически не производилась, поскольку работы велись на используемом земляном полотне. Поэтому сразу после разбивки была проведена частичная планировка поверхности автогрейдером, для придания земляному полотну поперечного уклона в сторону откоса. Фотографии производства работ по подготовке участка приведены на рисунке 2.2.

a

б

Рисунок 2.2 – Выполнение работ по планировке участка

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

2020/070-0BOC

Лист

Помимо подготовки участка на шламонакопителе производилась подготовка бурового шлама. Подготовка включала в себя мероприятия по доведению его консистенции, позволяющей транспортировку автосамосвалом. В шлам буровой вносили портландцемент ПЦ500 Д0 с последующим перемешиванием шлама экскаватором (рисунок 2.3). Количество цемента подбиралось таким образом, чтобы быть достаточным (3% по массе) для достижения консистенции, которая позволит осуществить разработку шламонакопителя экскаватором и использовать для перевозки автосамосвалы.

Рисунок 2.3 – Подготовка шлама бурового

Транспортирование компонентов на участок строительства. Доставка минеральной части к месту производства работ была предусмотрена автосамосвалами. Материал равномерно расставляли в мешках (биг-бэг) весом 1 т на всей протяженности трассы.

Битумная эмульсия доставлялась на участок непосредственно перед производством работ в битумовозах и не хранилась, а сразу использовалась для приготовления строительного грунта «БРИТ». Битумовоз подключался к ресайклеру, через автономную систему которого при производстве подается и распределяется на всю ширину фрезеруемой полосы органическое вяжущее.

Доставка шлама бурового осуществлялась автосамосвалами. В ходе производства работ хранение шлама не предусматривалось. После доставки этот материал сразу выгружали и распределяли по поверхности земляного полотна. Доставка песка не требовалась, поскольку его уже завезли во время подготовки существующей насыпи.

П	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

а Рисунок 2.4 – Процесс подготовки песчаного слоя а – планировка слоя; б – уплотнение песка катком HAMM 3411

Распределение и планировка подготовленного бурового шлама. Подготовленный шлам разрабатывался в шламонакопителе экскаватором с погрузкой в автосамосвалы, в которых он транспортировался к участку строительства. Выгрузка осуществлялась в вал по оси будущего слоя. После чего проводилось распределение бурового шлама слоем 10-15 см бульдозерами и автогрейдерами. Отсыпанный слой проектной толщины разравнивался с учетом продольного уклона поверхности. В поперечном сечении поверхность слоя планировалась под проектный профиль. Фотографии процесса распределения и планировки бурового шлама представлены на рисунке 2.5.

a

Рисунок 2.5 — Распределение и планировка подготовленного бурового шлама а — разгрузка шлама в валик; б — распределение и уплотнение шлама бульдозером

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Перемешивание песчаного грунта с обработанным шламом буровым. Работа велась за один проход ресайклера Wirtgen W2500. Применение ресайклера для предварительного смешения материалов (без введения вяжущих) вызвано необходимостью провести более качественное смешение компонентов

строительного грунта «БРИТ» и высокой влажностью привезенного бурового

шлама. Процесс прохода работы ресайклера представлена на рисунке 2.6.

а Рисунок 2.6 – Перемешивание песчаного грунта с обработанным буровым шламом

а – работа ресайклера; б – перемешанный слой грунта и шлама

Планировка смеси тяжелым автогрейдером предварительное уплотнение. После прохода ресайклера получаемый слой перемешанного грунта был не уплотнен не обеспечивал возможность проезда цементораспределителя. Поэтому была выполнена планировка слоя автогрейдером и его уплотнение виброкатком НАММ 3411. Процесс подготовки слоя к проходу цементораспределителя представлен на рисунке 2.7.

б

Рисунок 2.7 – Планировка смеси тяжелым автогрейдером и предварительное уплотнение

а – планировка смеси тяжелым автогрейдером; б – предварительное уплотнение виброкатком.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Распределение цемента прицепным цементораспределителем.

Складированный на площадке ПЦ500 Д0 перегружали в цементораспределитель и распределяли по полосам с высчитанной нормой расхода. Расход цемента контролировали путем взвешивания материала, распределенного на участок с известной площадью. Распределение цемента и метод его контроля представлены на рисунке 2.8.

a

Рисунок 2.8 — Распределение цемента прицепным цементораспределителем а — распределение цемента по поверхности слоя грунта; б — метод контроля количества распределенного цемента

Приготовление строительного грунта «БРИТ» методом смешения на дороге. Приготовление материала велось путем перемешивания ресайклером Wirtgen W2500 песчаного грунта, шлама бурового, цемента и битумной эмульсии в определенном соотношении.

Работы по равномерному перемешиванию шлама бурового и местного грунта (песка) на заданную глубину выполняли по полосам шириной 2438 мм (покрытие формировалось проходами в 3 полосы). За фрезерным барабаном расположен регулируемый по высоте зачистной отвал, который улучшает качество перемешивания, создает ровную поверхность сфрезерованного материала за ресайклером. Фотографии проведения работ по смешению строительного грунта «БРИТ» представлены на рисунке 2.9.

Предварительное уплотнение и планировка слоя из строительного грунта «БРИТ». Сразу после прохода ресайклера проводилось предварительное уплотнение (прикатка) слоя комбинированным катком.

		·			
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

а Берисунок 2.9 – Устройство слоя из строительного грунта «БРИТ»

а – процесс перемешивания всех компонентов ресайклером в сцепке с битумовозом; б – готовый к профилированию и уплотнению строительный грунт «БРИТ»

После чего выполнялась планировка слоя автогрейдером для формирования проектного продольного профиля и создания ровной поверхности покрытия. Фотографии проведения работ по прикатке и профилированию слоя из строительного грунта «БРИТ» представлены на рисунке 2.10

a

б

Рисунок 2.10 – Прикатка и планировка слоя из строительного грунта а – предварительное уплотнение комбинированным катком; б – планировка слоя автогрейдером

После планировки проводилось окончательное уплотнение покрытия звеном катков, состоящего из двух механизмов: комбинированный каток и каток на пневмоходу. В первую очередь покрытие уплотняется катком на пневмоходу. За ним, левее, с перекрытием следа катка на 1/3 и выравнивая интервал 5 м, двигался вибрационный комбинированный каток. Каждый каток совершал 8-10 проходов по

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Рисунок 2.11 – Окончательное уплотнение слоя из строительного грунта «БРИТ»

а – окончательное уплотнение звеном из двух катков; б – спрофилированный и уплотнённый слой

После финального уплотнения необходимо было выдержать технологический перерыв в течение 7 суток, чтобы дорожное покрытие набрало прочность. Далее проводили лабораторный контроль на соответствие полученного строительного грунта «БРИТ» требованиям ТУ 23.99.13.123-015-77310225-2020.

2.2 Экспериментальный участок № 2 (Приобское месторождение (южная часть))

В рамках проведения опытно-промышленных испытаний в период с 19.07.2019 г. по 01.10.2019 г. произведены работы по устройству конструктивных слоев дорожной одежды с применением строительного грунта «БРИТ» на подъездной автомобильной дороге к кусту скважин №80 (инв. №10202636) Приобского месторождения (южная часть), протяжённостью 7 км для нужд ООО «Газпромнефть-Хантос» в Ханты-Мансийском автономном округе (ХМАО) Тюменской области. Расположение участка указано на рисунке 2.12.

Подп. и дата Взаи. инв.

1нв. № подл.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

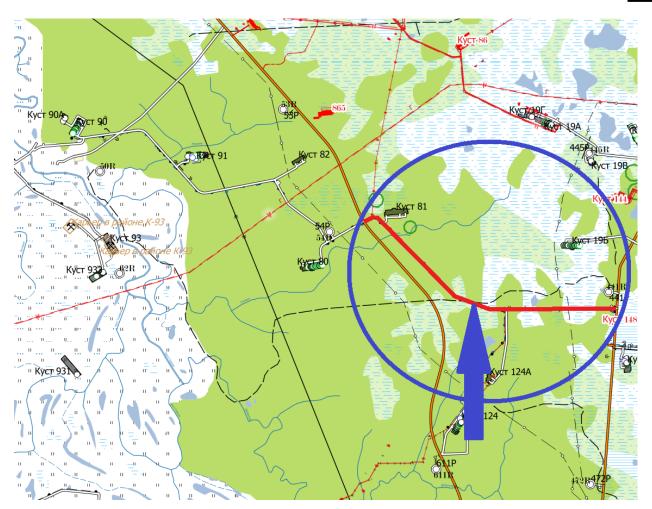


Рисунок 2.12 – Схема расположения строительства опытного участка

Данная дорога не имеет покрытия и представляет собой насыпь шириной более 12 м с переменной высотой. Насыпь устроена более 3-х лет назад из местных песчаных грунтов.

Устройство покрытия на объекте «Подъездная дорога к кусту скважин № 80, инв.№10202636 Приобского месторождения (южная часть) ООО «Газпромнефть-Хантос» с применением ведущей машины — ресайклера состояло из следующих технологических операций:

- испытание исходных материалов и подбор составов в лаборатории;
- досыпка насыпи земляного полотна до проектных отметок, планировка и уплотнение основания из местного грунта;
- подготовительные работы (удаление препятствий с существующего покрытия насыпи, разбивочные работы, подготовка шлама бурового в шламовом амбаре, подготовка вяжущих материалов);
 - отсыпка, планировка и уплотнение слоя основания из песка мелкого;

ı						
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

- транспортировка исходных материалов на объект (шлам буровой, цемент, битумная эмульсия);
 - распределение и планировка шлама бурового;
- перемешивание местного грунта с шламом буровым за один проход ресайклера;
- планировка смеси автогрейдером (бульдозером) и предварительное уплотнение грунтовым виброкатком в статическом режиме для обеспечения проезда цементораспределителя;
 - распределение цемента прицепным цементораспределителем;
- ресайклирование с внесением битумной эмульсии (одновременно перемешивание местного грунта, шлама бурового, цемента и битумной эмульсии);
- предварительное уплотнение покрытия грунтовым катком и планировка слоя автогрейдером;
- окончательное уплотнение покрытия катком на пневмошинах до требуемого коэффициента уплотнения.

Подготовительные работы. На начальном этапе произведены работы по отсыпке, планировке и уплотнению насыпи из песчаного гидронамывного грунта месторождения №1 Приобского месторождения (южная часть) до требуемого коэффициента уплотнения.

Одновременно с досыпкой насыпи велись работы по формированию откосной части земляного полотна для доведения заложения откосов до нормативного значения. Грунт, собранный с откосной части, перемещался в насыпь (рис. 2.13).

№ подл. Подп. и дата Взаи. инв. ^Л

Изм. Кол.уч Лист № док. Подп. Дата

2020/070-0BOC

Рис. 2.13 - Вид насыпи после досыпки с формированной откосной частью Доставка минерального вяжущего осуществлялась автотранспортными средствами из г. Сургут. Транспортировка и выгрузка осуществлялась к месту проведения работ.

Битумная эмульсия производилась на производственной базе в г. Ханты-Мансийск, дальность транспортировки составила 65 км. Емкостной парк для накопления битумной эмульсии состоял из двух емкостей объемом по 25 м³.

Следующий этап включал в себя работы по подготовке шлама бурового в шламонакопителях с дальнейшей транспортировкой к месту проведения работ (рис. 2.14).

Взаи. инв. М	
Подп. и дата	
Инв. № подл.	

 \bar{o}

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Рис. 2.14 - Подготовка шлама бурового на кустовой площадке

Для подготовки шлама бурового в шламонакопитель добавляли портландцемент марки ПЦ 400 в количестве 3-4% с последующим тщательным перемешиванием ковшом экскаватора. Полученную смесь выдерживали в течение 1 суток и затем транспортировали к месту проведения работ.

Устройство слоя покрытия из строительного грунта «БРИТ». Подготовленный шлам буровой распределяли на всю ширину насыпи и перемешивали с укрепляемым песчаным грунтов за один проход ресайклера. После этого распределяли комплексное вяжущее в укрепляемый слой с последующим перемешиванием за один проход ресайклера и дальнейшим уплотнением грунтовым катком до требуемого коэффициента уплотнения. Распределение минерального вяжущего производилось при помощи специальной техники – прицепного цементораспределителя с расходной емкостью 8т.

Также на одном из участков дороги вместо шлама бурового использовали материал, полученный на основе шлама бурового – «Ресойл» в следующем соотношении (рис. 2.15):

- Местный песчаный грунт 55,8%
- Ресойл 26,6%
- Минеральное вяжущее 10,0%
- Органическое вяжущее 7,6%.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Материал «Ресойл» соответствовал необходимым параметрам, в том числе по влажности, не требовал предварительной подготовки, его можно было сразу использовать в работах по устройству конструктивных слоев дорожной одежды.

Рис. 2.15 – Техногрунт «Ресойл»

После финального уплотнения конструктивных слоев дорожной одежды необходимо было выдержать технологический перерыв в течение 7 суток, чтобы дорожное покрытие набрало прочность.

Взаи. инв. №	Подп. и дата	Инв. № подл.

I						
I	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

3.1. Лабораторный контроль строительного грунта «БРИТ» Крайнего месторождения

Лабораторный контроль выполнял ООО «Сибирский инновационный дорожный центр» в августе 2019 года (сертификат № РРС RU.РУ037.0026 с 25.12.2016 по 25.12.2018).

Определение максимальной плотности сухого грунта и оптимальной влажности

Для контроля качества уплотнения смеси и грунтового основания выполнялись испытания по определению максимальной плотности сухого грунта и оптимальной влажности по ГОСТ 22733-2016.

Согласно результатам испытаний установлено, что введение шлама бурового повысило оптимальную влажность смеси, но при этом несколько увеличило плотность скелета грунта, что может указывать на более плотную упаковку частиц и снижение пористости получаемого материала при добавке шламов буровых.

Контроль качества уплотнения слоя

Непосредственно контроль качества уплотнения слоя велся методом режущего кольца по ГОСТ 5180-2015. Кроме основного метода (вышеприведенного) для операционного контроля степени уплотнения грунтов в строительстве выполнялся контроль плотности экспресс методом с использованием динамического плотномера Д-51.

Согласно результатам проведенных испытаний, на всех слоях был достигнут требуемый коэффициент уплотнения (0,98) согласно ГОСТ 30491-2012 и СП 78.13330.2012, а в некоторых точках и более высокий, что способствует повышению качества дорожной конструкции.

Определение предела прочности на сжатие при температуре 20 °C

Определение предела прочности на сжатие при температуре 20 °C выполнялось согласно требованиям ГОСТ 12801-98. Изготовление цилиндрических образцов из укрепленных грунтов, проводилось на месте производства работ с помощью малого ПСУ, что допускается согласно ГОСТ 30491-2012.

-						
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Взаи. инв. №

2020/070-0B0C

Лист

Согласно результатам испытаний, предел прочности на сжатие при температуре 20 °C образцов смеси с опытного участка полностью соответствовал требованиям ГОСТ 30491-2012.

Определение степени водонасыщения

Определение степени водонасыщения велось согласно ГОСТ 12801-98. Результаты испытаний показали, что смеси на участке с добавлением шламов буровых имеют низкие показатели водонасыщения по объему.

Это может говорить о большей стойкости такого материала к разрушениям при замерзании воды в порах материала, а, следовательно, о большей долговечности слоя.

Определение предела прочности на сжатие в водонасыщенном состоянии

Испытания по определению предела прочности на сжатие в водонасыщенном состоянии выполнялись аналогично пределу прочности на сжатие.

Результаты испытаний показали, что прочность в водонасыщенном состоянии на всех участках удовлетворяло требованиям ГОСТ 30491-2012.

Определение набухания

Набухание определяли, как приращение объема образца после насыщения его водой.

Результаты испытаний показывают, что на всем участке строительства выполнялись требования ГОСТ 30491-2012, касательно параметра набухания по объему. Тем не менее следует отметить, что в образцах, содержащих шламы буровые набухания не отмечалось вовсе, что вкупе с более низкими показателями водонасыщения может говорить о большей стойкости строительного грунта «БРИТ» к влиянию циклических процессов увлажнения-высыхания материала под действием сезонных изменений погоды.

Определение коэффициента морозостойкости

Сущность метода заключалась в определении отношения прочности при сжатии образцов после воздействия на них установленного числа циклов замораживания-оттаивания к прочности водонасыщенных образцов.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

ООО «Сибирский инновационный дорожный центр» было проведено 2 цикла испытаний для рецептур включающих шлам буровой и без него. В первом случае коэффициент морозостойкости показал значение 0,97, во втором 0,90, что может указывать на преимущество строительного грунта «БРИТ» над укрепленным местным песчаным грунтом.

Определение модуля упругости методом статического штампа

Модуль упругости земляного полотна опытного участка оценивался сотрудниками ФГБОУ ВО СибАДИ два раза в течении 2018 г. Испытания вели по методике ОДМ 218.5.007-2016. Первый цикл выполнялся для определения модуля упругости конструкции без покрытия из исследуемого материала, а второй после его укладки и в проектном возрасте 28 суток.

3.2. Лабораторный контроль строительного грунта «БРИТ» Приобского месторождения (южная часть)

При проведении работ из каждой партии готового строительного грунта «БРИТ» отбирались пробы для проведения лабораторного контроля качества.

Контролировали следующие показатели:

- Влажность смеси, % по массе;
- Плотность, г/см3;
- Водонасыщение, % по объему;
- Набухание, % по объему;
- Предел прочности на сжатие образцов при температуре 20°C, МПА;
- Предел прочности на сжатие водонасыщенных образцов при температуре 20°C, МПА;
- Предел прочности на растяжение при изгибе водонасыщенных образцов при температуре 20°C, МПА;
- Водостойкость;
- Водостойкость при длительность водонасыщении;
- Коэффициент морозостокойсти.

Для строительного грунта «БРИТ», укрепленного органоминеральным вяжущим, из приведенного выше перечня показателей согласно ГОСТ 30491 необходимыми являются только следующие:

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

- Предел прочности на сжатие водонасыщенных образцов при температуре 20°C, МПА;
- Предел прочности на растяжение при изгибе водонасыщенных образцов при температуре 20°C, МПА;
- Коэффициент морозостойкости;
- Набухание.

По результатам проведенных испытаний рекомендовано предусмотреть при устройстве покрытия уход за свежеуложенным слоем: увлажнение или нанесение пленкообразующих веществ. Это необходимо для достижения более высоких прочностных показателей строительного грунта «БРИТ».

На основании полученных результатов подтверждена высокая эффективность использования шлама бурового / материалов, полученных из шлама бурового в технологии укрепления грунтов. Шлам буровой выполняет роль гранулометрической добавки однородного местного грунта, увеличивая плотность и удобоуплотняемость грунта.

Взаи. инв. №						
Полп. и лата						
№ полл.						

Изм.

Кол.уч

Лист № док.

Подп.

Дата

С целью оценки воздействия разрабатываемой технологии по устройству конструктивных слоев дорожной одежды автомобильных дорог или иных транспортных сооружений с применением строительного грунта «БРИТ» на окружающую среду были отобраны пробы почвы, поверхностных, подземных вод, донных отложений в пределах воздействия объектов проведения ОПИ, а также образцы строительного грунта «БРИТ».

4.1 Методика проведения полевых работ на крайнем месторождении

Отбор проб на Крайнем месторождении производили до начала производства работ по устройству конструктивных слоев и после проведения работ по Технологии в 2018 г (табл. 4.1).

Акты отбора проб Крайнего месторождения представлены в Приложении 1, протоколы результатов исследований в Приложении 2.

Таблица 4.1 — виды и объемы полевых работ района расположения экспериментального участка автомобильной дороги

Наименование работ	Объем работ (количество проб) в 2018 г.		Итого
	Июль	Сентябрь	
Отбор проб строительного грунта «БРИТ»		1	1
Отбор проб подземных вод	3	3	6
Отбор проб поверхностных вод	5	5	10
Отбор проб донных отложений	5	5	10
Отбор проб почвенного покрова	3	3	6

4.1.1 Отбор проб поверхностных и подземных вод

Отбор проб поверхностных и подземных вод осуществлялся в соответствии с требованиями: ГОСТ 17.1.5.05-85 [Охрана природы. Гидросфера., 2000]; ГОСТ

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	

17.1.3.07-82 [Охрана природы. Гидросфера., 2001]; ГОСТ 31861-2012 [Вода. Общие требования., 2014]; РД 52.24.309-2011 [Организация и проведение режимных.. 2011]; Р 52.24.353-2012 [Отбор проб поверхностных., 2012]; ГОСТ Гидросфера., 2003]. 17.1.5.04-81 [Охрана природы. Данные требования получения репрезентативных проб. Репрезентативной использовали ДЛЯ считалась такая проба, которая в максимальной степени характеризует качество воды по данному показателю, является типичной и не искаженной вследствие концентрационных и других факторов. Выбор местоположения пунктов отбора проб осуществлялся согласно Программе работ.

Методы отбора, транспортирования, подготовка к хранению, хранение и приемка проб воды в лаборатории для определения ее состава и свойств учитывали требования соответствующих методик, аттестованных в установленном порядке. Отбор, хранение и транспортировка проб поверхностных вод осуществлялась в соответствии с требованиями: ГОСТ 17.1.5.05-85 [Охрана природы. Гидросфера., 2000].

4.1.2 Отбор проб донных отложений

Донные отложения отбирали для определения характера, степени и глубины проникновения в них загрязняющих веществ, изучения закономерностей процессов самоочищения, выявления источников вторичного загрязнения и учета воздействия антропогенного фактора на водные экосистемы.

Отобранная проба должна характеризовать не столько донные грунты, сколько водный объект или его часть за определенный промежуток времени. В водоемах и водотоках точки отбора проб выбирали с учетом распределения донных отложений и их перемещения. Отбор таких проб осуществлялся в местах максимального накопления донных отложений, а также в местах, где обмен загрязняющими веществами между водой и донными отложениями наиболее интенсивен.

Места отбора проб донных отложений и периодичность отбора совмещали с местами отбора проб поверхностных вод. Донные отложения отбирали в соответствии с ГОСТ 17.1.5.01-80 [Охрана природы. Гидросфера., 1984]; РД 52.24.609-2013 [Организация и проведение., 2013], щупом донным ГР-69 со

дна водоёмов на площади 1 m^2 .

		·			
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Отбор проб почвенного покрова проводился методом конверта, в соответствии с ГОСТ 17.4.4.02-84 [Охрана природы. Почвы..., 2008]; ГОСТ 17.4.3.01-83 [Охрана природы. Почвы.,2008]; МУ 2.1.7.730-99 [Гигиенические требования к качеству., 1999]; ГОСТ 12071-2000 [Грунты. Отбор, упаковка., 2001]; ГОСТ 28168-89 [Почвы. Отбор проб, 1989]. Выбор местоположения пунктов отбора проб осуществлялся согласно Программе наблюдения.

Метод конверта является наиболее распространенным способом отбора смешанных почвенных образцов. При этом из пунктов наблюдения контролируемого элементарного участка (или каждой рабочей пробоотборной площадки) брали 5 образцов почвы. Точки были расположены так, чтобы мысленно соединенные прямыми линиями, давали рисунок запечатанного конверта (длина стороны квадрата может составлять от 2 до 5-10 м). Пробы почв отбирали с гумусового горизонта и до глубины около 20 см. Из каждой точки отбирали около 1 кг (по объему около 0,5 л), но не менее 0,5 кг почвы.

Путем смешивания точечных проб, отобранных на одной пробной площадке, формировали одну объединенную пробу весом не менее 1кг. Отбор почв для определения токсичности в местах хранения отходов и для радиологического исследования осуществляется аналогичным способом.

Отбор строительного грунта «БРИТ» производили аналогичным методом.

Отобранные пробы почвенного покрова, донных отложений, поверхностных вод, строительного грунта «БРИТ» были переданы на химический анализ в аккредитованные лаборатории ФГАОУ ВО «Тюменский государственный университет», г. Тюмень (аттестат аккредитации №РОСС.RU.0001.511630 от 06.11.2014 г.) и ФБУЗ «Центр гигиены и эпидемиологии в Тюменской области», г. Тюмень (аттестат аккредитации №РОСС.RU.0001.510119 от 13.08.2015 г. (Приложение 5).

Подп. и дата Взаи. инв. №

Инв. Nº подл.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

4.2.1 Экологическая оценка состояния поверхностных вод.

Объектами оценки экологического состояния поверхностных вод на территории экспериментального участка служили озеро Иемятто и озеро без названия.

Отбор проб поверхностных вод из озер осуществлялся 18.07.2018 г. перед строительством экспериментального участка автодороги (5 проб) и 02.09.2018 г. после устройства дорожного полотна (5 проб).

Оценка качества воды проводилась по показателям в соответствии с разработанной программой мониторинга.

Отобранные пробы поверхностных вод исследуемой территории характеризовались цветностью, которая изменялась от светло-коричневого до бурого оттенков, что соответствовало цветности природной воды, обусловленной заболоченностью территории.

На момент обследования озёр по большинству показателей концентрации определяемых веществ были ниже предела обнаружения МВИ. Нормативы федерального значения также не были превышены ни в одном пункте наблюдения, что говорит о локальном благополучии водной экосистемы.

По уровню кислотности (pH) исследуемые поверхностные воды до начала устройства экспериментального дорожного полотна относились к «слабокислым» Величины pH поверхностной воды в этот период колебались в широких пределах 5,2-6,4 (табл. 4.2). После строительства километрового участка дороги было выявлено закисление изучаемых водных объектов: величина pH составляла 4,7-4,9. Воздействия от экспериментального объекта не отмечено.

В целом, показатели, определяемые в поверхностных водах, не превышали нормативных значений и значений регионального фонового уровня, за исключением хлорид-иона и нефтепродуктов.

Подп. и дата Взаи. инв. №

нв. *Nº* подл.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Таблица 4.2 - Содержание контролируемых химических элементов в поверхностных водах района расположения экспериментального участка автодороги

№ проб	Описание местонахождения пункта наблюдения	рН, ед. рН	Хлорид- ион, мг/дм ³	НП, мг/дм ³	Медь, мкг/дм ³	Хром VI, мкг/дм ³	Цинк, мкг/дм ³	Свинец, мкг/дм ³	Кадмий, мг/дм ³	Кобальт, мкг/дм ³	Мышьяк, мкг/дм ³	Ртуть, мкг/дм ³
	ПДК _{рв} 1	-	300	0.05	1	20	10	6	0.005	10	50	0.01
	региональные значения овского района ЯНАО ²	7.04	4.56	0.016	0.98	8	6.6	1.37	-	-	-	-
			Перио	д отбора	а проб:	июль						
ПВ-1(ф)	Озеро б/н. С СВ стороны от экспериментального участка дороги	5.2	5.83	0.046	<1	1.25	4,0	<2	<0,000	<2	<2	<0,01
ПВ-2	Озеро б/н. С СЗ стороны от экспериментального участка дороги	5.4	7.41	<0,04	<1	1.75	<2,0	<2	<0,000	<2	<2	<0,01
ПВ-3	Оз. Иемятто, северная его часть	6.4	28,00	<0,04	<1	1.05	3.5	<2	<0,000	<2	<2	<0,01
ПВ-4	Оз. Иемятто, западная его часть	6.2	28.10	<0,04	<1	1.55	2.8	<2	<0,000	<2	<2	<0,01
ПВ-5	Оз. Иемятто, южная его часть	6.2	28.30	<0,04	<1	2.05	2.5	<2	<0,000	<2	<2	<0,01
Среднее зна	ачение	5.9	19.53	0.046	<1	1.53	3.2	<2	<0,000	<2	<2	<0,01
Максималы	ное	6.4	28.30	0.046	0	2.05	4,0	0	0	0	0	0
Минимальн	ioe	5.2	5.83	0.046	0	1.05	2.5	0	0	0	0	0
		I	Териод	отбора і	троб: се	нтябрь						
ПВ-1(ф)	Озеро б/н. С СВ стороны от экспериментального участка дороги	4.7	2.33	<0,04	<1	2.45	<2	<2	<0,000	<2	<2	<0,01
ПВ-2	Озеро б/н. С СЗ стороны от экспериментального участка дороги	4.9	2.12	<0,04	<1	2.05	<2	<2	<0,000	<2	<2	<0,01
ПВ-3	Оз. Иемятто, северная его часть	4.9	1.82	0.041	<1	2.65	<2	<2	<0,000	<2	<2	<0,01
ПВ-4	Оз. Иемятто, западная его часть	4.9	1.90	<0,04	<1	1.75	<2	<2	<0,000	<2	<2	<0,01
ПВ-5	Оз. Иемятто, южная его часть	4.9	2.12	0.047	<1	2.15	<2	<2	<0,000	<2	<2	<0,01
Среднее зна	ачение	4.9	2.06	0.044	<1	2.21	<2	<2	<0,000	<2	<2	<0,01
Максималы	ное	4.9	2.33	0.047	0	2.65	0	0	0	0	0	0
Минимальн	ioe	4.7	1.82	0.041	0	1.75	0	0	0	0	0	0

¹Приказ Министерства сельского хозяйства России от 13 декабря 2016 года № 552 «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения» [Приказ Минсельхоза…, 2016].

²Справочник по применению средних региональных значений содержания контролируемых компонентов на мониторинговых полигонах при оценке состояния уровня загрязнения окружающей среды на территории ЯНАО [Справочник по применению..., 2014].

³Приказ Федерального агентства по рыболовству от 4.08.2009 г. №695 «Об утверждении методических указаний по разработке нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения» [Приказ Федерального агентства..., 2009].

Примечания:

1. Жирным шрифтом зеленого цвета выделены значения контролируемых химических элементов, превышающие средние региональные значения в поверхностных водах Пуровского района ЯНАО.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Превышения концентрации хлоридов по сравнению с региональными фоновыми значениями были зафиксированы до начала строительства и составили 28 мг/дм³, вследствие чего, можно полагать, что изменение концентрации хлоридов может носить сезонный характер или обусловлено сменой гидрологического режима, но не связано со строительством экспериментального участка дороги. По результатам локального мониторинга содержание хлоридов в поверхностных водах Крайнего лицензионного участка варьирует в диапазоне от 3,15 до 51,3 мг/дм³. Отмечены превышения регионального фонового уровня, что объясняется влиянием инфузии межмерзлотных минерализованных вод вследствие их вскрытия, а также сменой гидрологического режима.

Изменения концентрации нефтепродуктов не превышали погрешностей измерения, что свидетельствовало о стабильной геохимической ситуации по данному показателю и отсутствии влияния работ по устройству конструктивных слоев экспериментального участка дороги на экологическое состояние поверхностных вод.

По результатам локального экологического мониторинга Крайнего месторождения, проведенного в ноябре 2019 г. случаев экстремально-высокого загрязнения поверхностных вод в зоне влияния объектов месторождения не выявлено.

Результаты проведенных исследований по оценке экологического состояния поверхностных вод Крайнего лицензионного участка свидетельствуют об их удовлетворительном качестве и отсутствии негативного техногенного влияния построенного экспериментального участка дороги на гидрохимический состав и качество поверхностных вод.

4.2.3. Экологическая оценка состояния донных отложений.

При оценке экологического состояния водных объектов важное значение имеет состояние донных отложений, как среды депонирования загрязняющих веществ, результаты изучения которой свидетельствуют как о предшествующем загрязнении, так и о направленности процессов миграции и трансформации загрязнений.

Отбор проб донных отложений территории участка осуществлялся перед строительством экспериментального участка автодороги 18.07.2018 г. (5 проб) и

Изм. Кол.уч Лист № док. Подп. Дата

2020/070-OBOC

Лист

после устройства дорожного полотна 02.09.2018 г. (5 проб). На заторфованных участках в озерах преобладают торфянистые отложения, сложенные минерализованным торфом, разной степени разложения темно-коричневого или серовато-коричневого цветов. На аллювиально-озерных равнинах в озерах развиты алеврито-илистые или алеврито-песчаные осадки серого цвета с невысоким количеством органического детрита. В крупных реках в прибрежной зоне доминируют средне- и мелкозернистые хорошо сортированные пески светлосерого цвета. Основным источником минеральной части осадков являются размываемые (в береговых уступах или подстилающие) четвертичные морские, аллювиальные и озерно-аллювиальные отложения.

Анализ донных отложений в природных водоемах, находящихся в зоне воздействия экспериментального участка дороги, показал превышение региональных фоновых концентраций по нефтепродуктам во всех пунктах наблюдения и в одном пункте по цинку (Табл. 4.3).

Результатами лабораторных исследований проб донных отложений, отобранных в 2018 г. до и после устройства конструктивных слоев дорожной одежды, установлено, что содержание нефтепродуктов изменяется в широких пределах: от 23 до 335 мг/кг, что превышало средние региональные фоновые значения (10,14 мг/кг). Максимальная концентрация НП была зарегистрирована: до начала работ озере без названия c северо-восточной стороны экспериментального участка дороги – 244 мг/кг, и после – в северной части оз. Иемятто – 335 мг/кг. Так как высокие концентрации нефтепродуктов в донных отложениях были зафиксированы до начала работ, то высокие концентрации нефтепродуктов после завершения строительства участка автодороги, вероятнее всего не связаны с воздействием объекта строительства и вызваны естественными причинами или влиянием нефтедобывающих промышленных объектов на водные объекты.

Анализ результатов локального экологического мониторинга 2019 г. по содержанию нефтепродуктов показал, что их среднее содержание в донных отложениях лицензионного участка в 2,34 раза превышает фоновое значение Пуровского района. Относительно 2017-2018 гг. среднее содержание нефтепродуктов по водным объектам существенно снизилось с 98,4 мг/кг (2017

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

год) и 4273,6 мг/кг (2018 год). Высокие значения обусловлены природными факторами формирования и не представляют опасности для водных объектов.

Средние региональные значения ЯНАО содержания цинка в донных отложениях составляют: 11,79 мг/кг (для Пуровского района). В пробах донных отложениях озера без названия с северо-западной стороны от экспериментального участка дороги до начала строительства установлено повышенное содержание цинка относительно регионального фона ЯНАО – 16,2 мг/кг. В остальных пунктах концентрация цинка была значительно ниже и варьировала от <0,5 до 3,5 мг/кг. Повышенное содержание цинка в указанном пункте наблюдения может быть связано с его накоплением в процессе разложения органического вещества.

По результатам локального экологического мониторинга 2019 года, установлено, что содержание цинка варьирует во всех пробах от менее 0,5 до 12,7 мг/кг и в среднем составляет 6,12 мг/кг. Содержание цинка находится на экологически безопасном уровне, превышений регионального фона по Пуровскому району не выявлено. Результаты 2019 года показали снижение концентрации этого элемента в донных отложениях в 7,67 раз по сравнению с данными 2018 г.

Привнос цинка в донные отложения исследуемых водоемов со стоками с экспериментального участка автодороги и изменения, вследствие этого, его содержания, не выявлены.

По остальным показателям превышения обнаружены не были, что говорит об отсутствии влияния экспериментального участка дороги на привнос загрязняющих веществ в донные отложения.

Проведенный в 2019 г. локальный экологический мониторинг донных отложений исследуемых поверхностных водоемов Крайнего месторождения позволил установить, что содержание химических элементов в условно-фоновых и контрольных пунктах мониторинга находится на сопоставимом с региональным фоном уровне и свидетельствует об отсутствии антропогенного загрязнения.

Общей негативной динамики накопления в донных отложениях токсичных и органических веществ не выявлено.

№ проб	Описание местонахождения пункта наблюдения	рН, ед. рН	Хлорид-ион, мг/кг	HII, MI/KI	Медь (подвижная форма), мг/кг	Свинец (подвижная форма), мг/кг	Хром (подвижная форма), мг/кг	Цинк (валовая форма), мг/кг	Кобальт (подвижная форма), мг/кг	Ртуть, мг/кг	Кадмий (подвижная форма) мг/сг	Мышьяк (валовая форма), мг/кг
	гиональный фон ровского района*	-	-	10,1 4	3,48	-	-	11,7 9	-	-	-	-
	1	2	3	4	5	6	7	8	9	10	11	12
				Пери	од отбор	а проб: иі	ЮЛЬ					
ДО- 1(ф)	Озеро б/н. С СВ й стороны от экспериментальног о участка дороги	6.35	90,1	244	<0,5	<0,5	<0,5	0,9	<0,5	0,162	<0,5	<0,5
ДО- 2	Озеро б/н. С СЗ стороны от экспериментальног о участка дороги	5.05	109,2	71	<0,5	<0,5	<0,5	16,2	<0,5	0,312	<0,5	<0,5
ДО- 3	Оз. Иемятто, северная его часть	6.10	<10, 0	66	<0,5	<0,5	<0,5	<0,5	<0,5	0,155	<0,5	<0,5
ДО- 4	Оз. Иемятто, западная его часть	6.92	21,1	108	<0,5	<0,5	<0,5	2,0	<0,5	0,301	<0,5	<0,5
ДО- 5	Оз. Иемятто, южная его часть	6.79	<10, 0	96	<0,5	<0,5	<0,5	2,7	<0,5	0,200	<0,5	<0,5
	Среднее значение	6.24	73,5	117	<0,5	<0,5	<0,5	5,4	<0,5	0,226	<0,5	<0,5
	Максимальное	6.92	109,2	244				16,2		0,312		
	Минимальное	5.05	21,1	66				0,9		0,155		
				Период	д отбора і	проб: сен	тябрь					
ДО- 1(ф)	Озеро б/н. С северовосточной стороны от экспериментальног о участка дороги	6,81	<10,	42	<0,5	<0,5	<0,5	2.8	<0,5	0,104	<0,5	<0,5
ДО- 2	Озеро б/н. С северо- западной стороны от экспериментальног о участка дороги	6,05	<10, 0	178	<0,5	<0,5	<0,5	2.4	<0,5	0,055	<0,5	<0,5
ДО- 3	Оз. Иемятто, северная его часть	6,42	<10, 0	335	<0,5	<0,5	<0,5	2.3	<0,5	0,052	<0,5	<0,5
	1	2	3	4	5	6	7	8	9	10	11	12
ДО- 4	Оз. Иемятто, западная его часть	5,89	<10, 0	23	<0,5	<0,5	<0,5	<0,5	<0,5	<0,00	<0,5	<0,5

Примечание

Примечание. Жирным шрифтом зеленого цвета выделены значения контролируемых химических элементов, превышающие концентрации средних региональных значений ЯНАО по Пуровскому району.

					·
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

^{*} Справочник по применению средних региональных значений содержания контролируемых компонентов на мониторинговых полигонах при оценке состояния уровня загрязнения окружающей среды на территории ЯНАО [Справочник по применению..., 2014].

Отбор проб почвенного покрова осуществляли в районе экспериментального участка автодороги перед устройством конструктивных слоев участка автодороги 18.07.2018 г. (3 объединенные пробы) и 02.09.2018 г. после устройства конструктивных слоев (3 объединенные пробы).

Полученные результаты аналитических исследований почвенного покрова сравнивали с ПДК (ОДК) загрязняющих веществ в почвах и региональными фоновыми концентрациями (Табл. 4.4).

В почвенном покрове изучаемого участка превышение ПДК исследуемых параметров не выявили, но при этом, после устройства дорожного полотна, зарегистрировали превышение регионального фона ЯНАО по нефтепродуктам и ртути. Остальные показатели были ниже предела обнаружения МВИ.

Проведенные исследования показали, что концентрация нефтепродуктов в изучаемых почвах изменялась от 252 до 6226 мг/кг, до и после строительства экспериментального участка дороги, что значительно превышает региональный фон ЯНАО по Пуровскому району – 8,2 мг/кг. Согласно «Методическим рекомендации ПО выявлению деградированных и загрязненных земель» [Методические рекомендации..., 1995], низким считается уровень загрязнения почв нефтепродуктами от 1000 до 2000 мг/кг. Во многом значительные концентрации НП в почвах района работ обусловлены содержанием веществ естественного происхождения: растительность территории обогащена высокомолекулярными соединениями (смолами). Кроме того, в процессе торфообразования образуются природные соединения углеводородов. Этот вывод подтверждается результатами сопряженного анализа почв различного типа: повышенные концентрации нефтепродуктов отмечались лишь в торфяных почвах.

В связи с общей тенденцией увеличения концентрации нефтепродуктов в пунктах наблюдения, можно говорить как об антропогенном влиянии, так и о сезонных колебаниях концентрации. Содержание нефтепродуктов также напрямую зависит от структуры отобранной почвы (минеральные или органические горизонты), наличия растительности, механического состава почв.

В 2019 году в рамках локального экологического мониторинга с целью выявления возможного негативного воздействия объекта строительства на почвы

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

проведены дополнительные исследования, по результатам которых на исследуемой территории концентрации нефтепродуктов находились в диапазоне: <5 – 65мг/кг при среднем значении 23,57 мг/кг.

Анализ результатов локального экологического мониторинга 2019 г. в сравнении с 2018 г. показал, что среднее содержание нефтепродуктов в почвах лицензионного участка снизилось в 39 раз. Содержание нефтепродуктов в почвах Крайнего лицензионного участка в 2019 году превышало региональный фоновый уровень. Вариабельность значений нефтепродуктов по лицензионному участку обусловлена геохимическими особенностями почв.

Концентрация *ртути* (*Hg*) до начала строительства экспериментального участка находилась ниже регионального фона ЯНАО и фонового пункта мониторинга — от 0,0055 до 0,0080 мг/кг. В сентябре, после окончания строительства участка дороги концентрация ртути выросла во всех пунктах наблюдения и стала превышать региональный фон ЯНАО по Пуровскому району — от 0,047 до 0,117 мг/кг. Однозначно говорить о влиянии участка дороги не представляется возможным, так как изменения концентрации ртути по пунктам наблюдения коррелируют с повышением содержанием нефтепродуктов. Вероятно, повышенное содержание данного компонента в почвенном покрове связано с увеличением концентрации нефтепродуктов.

При этом по результатам локального экологического мониторинга 2019 года установлено, что концентрация ртути в почвах месторождения находится в пределах от менее <0,005 до 0,12 мг/кг, при среднем значении 0,05 мг/кг. Среднее содержание ртути в почвах Крайнего ЛУ превышает региональный фон в 1,35 раза. Превышений ПДК ртути в почвах не зафиксировано.

Инв. № подл. Подп. и дата Взаи. инв. №

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

№ проб	Описание местонахождения пункта наблюдения	рН, ед. рН	Нефтепродукты, мг/кг	Кадмий (подвижная форма), мг/кг	Медь (подвижная форма), мг/кг	Свинец (подвижная форма), мг/кг	Хром (подвижная форма), мг/кг	Цинк (подвижная форма), мг/кг	Ртуть, мг/кг	Кобальт (подвижная форма), мг/кг	Мышьяк (валовое содержание), мг/кг
	ПДК*	-		1	3	6	6	23	2,1	5,0	2,0
значен	ие региональные ия для Пуровского йона ЯНАО**	-	8,2	0,37	8,8	6,9	35,1	30,3	0,015	-	-
			П	ериод от	бора проб	5: июль					
ПП-1	СВ от экспериментального участка автодороги	5,8	252	<0,5	<0,5	<0,5	<0,5	<0,5	0,0080	<0,5	<0,5
ПП-2	СЗ от экспериментального участка автодороги	6,0	4991	<0,5	<0,5	<0,5	<0,5	<0,5	0,0074	<0,5	<0,5
ПП-3ф	Фоновый пункт наблюдения. СВ экспериментального участка автодороги	5,5	375	<0,5	<0,5	<0,5	<0,5	<0,5	0,0055	<0,5	<0,5
Ср	еднее значение	5,8	1872,7	<0,5	<0,5	<0,5	<0,5	<0,5	0,0070	<0,5	<0,5
N	Лаксимальное	6,0	4991	0	0	0	0	0	0,0080	0	0
N	Минимальное	5,5	252	0	0	0	0	0	0,0055	0	0
			Пер	иод отбо	ра проб:	сентябрь					
ПП-1	СВ от экспериментального участка автодороги	5,6	1795	<0,5	0,59	<0,5	<0,5	4,3	0,076	<0,5	<0,5
ПП-2	СЗ от экспериментального участка автодороги	5,9	6226	<0,5	<0,5	<0,5	<0,5	3,6	0,117	<0,5	<0,5
ПП-3ф	Фоновый пункт наблюдения. СВ экспериментального участка автодороги	6,2	2524	<0,5	<0,5	<0,5	<0,5	2,0	0,047	<0,5	<0,5
Среднее значение		5,9	3515	<0,5	0,59	<0,5	<0,5	3,3	0,080	<0,5	<0,5
N	Лаксимальное	6,2	6226	0	0,59	0	0	4,3	0,117	0	0
N	Минимальное	5,6	1795	0	0,59	0	0	2,0	0,047	0	0

Примечание:

Примечание. Жирным шрифтом зеленого цвета выделены значения контролируемых химических элементов, превышающие средний региональный фон на территории ЯНАО

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

^{*}Гигиенические нормативы ГН 2.1.7.2041-06 «Предельно допустимые концентрации (ПДК) химических веществ в почве»

^{*} Гигиенические нормативы ГН 2.1.7.2511-09 «Ориентировочно допустимые концентрации (ОДК) химических веществ в почве»

^{**}Справочник по применению средних региональных значений содержания контролируемых компонентов на мониторинговых полигонах при оценке состояния уровня загрязнения окружающей среды на территории ЯНАО [Справочник по применению..., 2014].

^{****}Охрана природы. Почвы. Классификация химических веществ, для контроля загрязнения: ГОСТ 17.4.1.02-83.

4.2.7. Экологическая оценка состояния подземных вод.

Отбор проб подземных вод с территории участка осуществлялся в соответствии с Программой работ в пунктах отбора проб почвенного покрова и техническим заданием перед строительством экспериментального участка автодороги 18.07.2018 г. (3 объединенные пробы) и после устройства дорожного полотна 02.09.2018 г. (3 объединенные пробы). Содержание контролируемых химических элементов в подземной воде исследуемой территории в 2018 году приведено в таблице 4.5.

Из определяемых показателей превышение ПДК было обнаружено по азоту аммонийному, концентрация которого была выше ПДК в двух пунктах на начальном этапе наблюдения — с западной и восточной сторон от экспериментального участка автодороги (2,85 и 2,64 мг/дм³). На следующем этапе наблюдений концентрация аммонийного азота в подземной воде снизилась, что говорит о естественных колебаниях в природной среде.

По другим показателям превышений не обнаружено.

Анализ экологического состояния подземных вод указывает на отсутствие негативного воздействия экспериментального участка автодороги.

В рамках локального экологического мониторинга Крайнего месторождения, проведенного в 2019 г., оценка состояния подземных вод не осуществлялась.

Взаи. инв. №	
Подп. и дата	
гв. № подл.	
B	

ľ						
l						
ĺ	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Таблица 4.5 - Содержание контролируемых химических элементов в подземной воде исследуемого района

№ проб	Описание местонахождения пункта наблюдения	рН, ед. рН	НП, мг/дм³	Медь, мкг/дм ³	Хром VI, мкг/дм ³	$ ext{Цинк, мкг/дм}^3$	Свинец, мкг/дм³	Кадмий, мг/дм³	Кобальт, мкг/дм 3	$ m Mышьяк,\ Mкг/дм^3$	Ртуть, мкг/дм³	Перманганатная окисляемость, мгО/лм ³	Азот аммонийный, мг/дм 3	Запах при 20С, баллы	Запах при 60С, баллы	Мутность, ЕМФ	Температура, С
	ПДК1	1	0.3	100	50	1000	10	0.001	100	10	0.5	-	1,5	-	-	1	-
				Пер	эиод о	тбора	проб	: июль									
ПодВ-1	С В стороны от экспериментальног о участка автодороги	4.1	<0,04	<1	1.35	13.3	<2	<0,000	<2	<2	<0,0	15. 0	2.6 4	1	1	0.93	2
ПодВ-2	С 3 стороны от экспериментальног о участка автодороги	3.8	0.118	<1	1.25	117. 0	<2	<0,000	<2	<2	<0,0	16. 0	2.8 5	1	2	66.4	2
ПодВ-3ф	Фоновый пункт наблюдения. СВ экспериментальног о участка автодороги	4.1	0.083	<1	1.35	2.4	<2	<0,000	<2	<2	<0,0	16. 0	1.4 7	1	2	>100	2
Сред	нее значение	4.0	0.101	<1	1.32	44.2	<2	<0,000	<2	<2	<0,0	15. 7	2.3	1	1.6 7	33.6 7	2
Mai	ксимальное	4.1	0.118	0	1.35	117. 0	0	0	0	0	0	16. 0	2.8 5	1	2.0	66.4 0	2
Ми	нимальное	3.8	0.083	0	1.25	2.4	0	0	0	0	0	15. 0	1.4 7	1	1.0	0.93	2
				Пери	од отб	бора пр	об: с	ентябрь									
ПодВ-1	С В стороны от экспериментальног о участка автодороги	4.0	<0,04	26.5	4.55	61	<2	<0,000	<2	<2	<0,0	82. 0	1.1 9	1	1	>100	2
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ПодВ-2	С 3 стороны от экспериментальног о участка автодороги	6.1	0.057	<1	4.15	<2	<2	<0,000	<2	<2	<0,0	25. 0	1.1 6	1	0	>100	2
ПодВ-3ф	Фоновый пункт наблюдения. СВ экспериментальног о участка автодороги	4.2	0.055	18.9	3.65	81	<2	<0,000	<2	<2	<0,0	36. 0	0.8	1	1	>100	2
Среднее значение		4.8	0.056	22.7	4.12	71	<2	<0,000	<2	<2	<0,0	47. 7	1.0 8	1	0.6 7	>100	2
Mai	ксимальное	6.1	0.057	26.5	4.55	81	0	0	0	0	0	82. 0	1.1 9	1	1.0	0	2
Ми	нимальное	4.0	0.055	18.9	3.65	61	0	0	0	0	0	25. 0	0.8 9	1	0.0	0	2

Примечание:

Жирным шрифтом красного цвета выделены значения контролируемых химических элементов, превышающие $\Pi J K_{ps}$.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

 $^{^{1}}$ Гигиенические нормативы «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. ГН 2.1.5.1315-03» [Постановление Минздрава РФ №79, 2003]

4.2.9 Анализ строительного грунта «БРИТ»

Для оценки качества и экологической безопасности строительного грунта «БРИТ» был выполнен отбор проб и последующий лабораторный анализ образцов (табл. 4.6) на содержание тяжелых металлов в валовой форме.

Таблица 4.6 - Содержание контролируемых химических элементов в строительном грунте «БРИТ» 2018г.

		Результат
Показатель	ПДК почвы	1-Грунт
	KXA	4073X-18
рН, ед. рН	Не	6,0
рп, ед. рп	нормируется	0,0
Свинец (валовая форма), мг/кг	<65,0	1,83
Медь (валовая форма), мг/кг	<66,0	29,2
Кадмий (валовая форма), мг/кг	<1,0	<0,5
Мышьяк (валовая форма), мг/кг	<5,0	<0,5
Кобальт (валовая форма), мг/кг	-	0,67
Хром (валовая форма), мг/кг	-	5,1
Цинк (валовая форма), мг/кг	<110,0	36
Ртуть (валовая форма), мг/кг	<2,1	<0,005

Полученные результаты свидетельствуют о том, что в строительном грунте «БРИТ» содержание тяжелых металлов в валовой форме не превышает предельно-допустимых нормативов, грунт не является токсичным для объектов окружающей среды и может использоваться по своему назначению.

При последующих работах по устройству конструктивных слоев дорожной одежды для готового строительного грунта «БРИТ» необходимо определять тяжелые металлы в подвижной форме чтобы оценить возможность миграции поллютантов в окружающую природную среду.

Взаи. инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

В районе исследования отбирались пробы почвенного покрова, донных отложений, поверхностных и грунтовых вод, строительного грунта «БРИТ». Виды и объемы полевых работ территории исследования приведены в таблице 4.7.

Акты отбора проб Приобского месторождения (южная часть) представлены в Приложении 3, протоколы результатов исследований в Приложении 4.

Таблица 4.7 - Виды и объемы полевых работ в 2019 г.

	Объем работ (ко	личество проб) в 2019	
		году	
Наименование работ	Июль	Октябрь	Итого
	(До начала	(После окончания	
	работ)	работ)	
Отбор проб строительного	_	2	2
грунта «БРИТ»	_	2	2
Отбор проб подземных вод	3	3	6
Отбор проб поверхностных	1	1	8
вод	4	4	0
Отбор проб донных отложений	4	4	8
Отбор проб почвенного	3	3	6
покрова	3	3	6

4.3.1. Отбор проб поверхностных и подземных вод

Отбор проб поверхностных и подземных вод осуществлялся в соответствии с требованиями: ГОСТ 17.1.5.05-85 [Охрана природы. Гидросфера., 2000]; ГОСТ 17.1.3.07-82 [Охрана природы. Гидросфера., 2001]; ГОСТ 31861-2012 [Вода. Общие требования., 2014]; РД 52.24.309-2011 [Организация и проведение режимных.. 2011]; Р 52.24.353-2012 [Отбор проб поверхностных., 2012]; ГОСТ 17.1.5.04-81 [Охрана природы. Гидросфера., 2003]. Данные требования использовали для получения репрезентативных проб. Репрезентативной считалась такая проба, которая в максимальной степени характеризует качество воды по данному показателю, является типичной и не искаженной вследствие концентрационных и других факторов. Выбор местоположения пунктов отбора проб осуществлялся согласно Программе работ.

Методы отбора, транспортирования, подготовка к хранению, хранение и приемка проб воды в лаборатории для определения ее состава и свойств

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Взаи. инв. №

4.3.2. Отбор проб донных отложений

Донные отложения отбирали для определения характера, степени и глубины проникновения в них загрязняющих веществ, изучения закономерностей процессов самоочищения, выявления источников вторичного загрязнения и учета воздействия антропогенного фактора на водные экосистемы.

Проба при этом должна характеризовать не столько донные грунты, сколько водный объект или часть за определенный промежуток времени. В водоемах и водотоках точки отбора проб выбирали с учетом распределения донных отложений и их перемещения. Отбор таких проб осуществлялся в местах максимального накопления донных отложений, а также в местах, где обмен загрязняющими веществами между водой и донными отложениями наиболее интенсивен.

Места отбора проб донных отложений и периодичность отбора совмещали с отбора проб поверхностных вод. Донные отложения отбирали соответствии с ГОСТ 17.1.5.01-80 [Охрана природы. Гидросфера., 1984]; РД 52.24.609-2013 [Организация и проведение., 2013], щупом донным ГР-69 со дна водоёмов на площади 1м².

4.3.3. Отбор проб почвенного покрова

Отбор проб почвенного покрова проводился методом конверта, соответствии с ГОСТ 17.4.4.02-84 [Охрана природы. Почвы..., 2008]; ГОСТ 17.4.3.01-83 [Охрана природы. Почвы.,2008]; МУ 2.1.7.730-99 [Гигиенические требования к качеству., 1999]; ГОСТ 12071-2000 [Грунты. Отбор, упаковка., 2001]; ГОСТ 28168-89 [Почвы. Отбор проб, 1989]. Выбор местоположения пунктов отбора проб осуществлялся согласно Программе наблюдения.

Метод конверта является наиболее распространенным способом отбора смешанных почвенных образцов. При ЭТОМ ИЗ ПУНКТОВ наблюдения контролируемого элементарного участка (или каждой рабочей пробоотборной

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

площадки) брали 5 образцов почвы. Точки были расположены так, чтобы мысленно соединенные прямыми линиями, давали рисунок запечатанного конверта (длина стороны квадрата может составлять от 2 до 5-10 м). Пробы почв отбирали с гумусового горизонта и до глубины около 20 см. Из каждой точки отбирали около 1 кг (по объему около 0,5 л), но не менее 0,5 кг почвы.

Путем смешивания точечных проб, отобранных на одной пробной площадке, формировали одну объединенную пробу весом не менее 1кг. Отбор почв для определения токсичности в местах хранения отходов и для радиологического исследования осуществляется аналогичным способом.

Методы отбора строительного грунта осуществляются аналогичным образом.

Отобранные пробы почвенного покрова, донных отложений, поверхностных вод и строительного грунта были переданы на химический анализ в аккредитованные лаборатории ФГАОУ ВО «Тюменский государственный университет», г. Тюмень (аттестат аккредитации №РОСС.RU.0001.511630 от 06.11.2014 г.) и ФБУЗ «Центр гигиены и эпидемиологии в Тюменской области», г. Тюмень (аттестат аккредитации №РОСС.RU.0001.510119 от 13.08.2015 г.

4.4. Экологическая оценка объектов окружающей среды Приобского месторождения (южная часть)

4.4.1. Экологическая оценка состояния поверхностных вод

На территории экспериментального участка для оценки состояния поверхностных вод исследовали озеро без названия и реку Еловая, которая пересекает экспериментальный участок дороги.

Поскольку на территории участка из исследуемых водных объектов не предполагается забор воды для хозяйственно-питьевых нужд, при оценке экологического состояния поверхностных вод полученные результаты исследования сравнивали с предельно допустимыми концентрациями загрязняющих веществ в водоемах рыбохозяйственного значения (ПДК рв), фоновыми (Табл. 4.8).

Отбор проб поверхностных вод на территории участка осуществляли 12.07.2019 г перед строительством экспериментального участка автодороги (4 пробы) и 09.10.2019 г. после устройства дорожного полотна (4 пробы).

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Отобранные пробы поверхностных вод этой территории окрашены, и изменяют цветность от светло-коричневого до бурого оттенков, что соответствует природной цветности воды, обусловленной заболоченностью территории.

Хлорид-ионы. В период отбора проб в июле концентрация хлоридов во всех пунктах наблюдения находилась почти на одинаковом уровне и составляла от 0,88 до 1,06 мг/дм³. Исключение составлял пункт 1-ПВ (Озеро без названия), в котором концентрация хлоридов была ниже предела обнаружения МВИ (<0.2 мг/дм³). Повторный отбор в октябре показал повышенные концентрации от 1,27 до 1,82 мг/дм³ относительно первого этапа мониторинга во всех пунктах (кроме 1-ПВ), превышения ПДК не отмечены. Изменение концентрации хлоридов может носить сезонный характер или обусловлено сменой гидрологического режима, но с большой степенью вероятности не связано со строительством экспериментального участка дороги.

Нефтепродукты (НП). Болота северных регионов частично разгружаются в реки, обеспечивая тем самым повышенные концентрации углеводородов в поверхностных водах, в том числе в водоемах, расположенных на территории исследования.

До начала строительства содержание нефтепродуктов было ниже предела обнаружения МВИ в пункте 3-ПВ и 4-ПВ, в пунктах 1-ПВ и 2-ПВ концентрации составили 0,25 и 0,3 мг/дм³ соответственно.

После завершения работ концентрация нефтепродуктов незначительно увеличилась во всех пунктах наблюдения. Максимальное значение составило 0,112 мг/дм³ — пункт 1-ПВ (Озеро без названия). В целом геохимическая ситуация по нефтепродуктам является стабильной, работы по устройству конструктивных слоев экспериментального участка дороги не оказали влияние на экологическое состояние поверхностных вод по этому показателю.

По результатам локального экологического мониторинга Приобского месторождения (южная часть) 2019 г. концентрация нефтепродуктов в поверхностных водах исследуемой площади Приобского лицензионного участка (южная часть), в целом не превышало нормативных значений по данному показателю (ПДК=0,05 мг/дм³).

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Инв. № подл.

Цинк. Содержание цинка в воде по пунктам наблюдения в пробах, отобранных 12.07.2019 было ниже ПДК, кроме пункта 2-ПВ.

В пробах, отобранных 09.10.2019 г. концентрация цинка в пунктах наблюдения увеличилась, кроме пункта 2-ПВ. Пункт 2-ПВ — Озеро без названия расположено в южном направлении от придорожного полотна на достаточном удалении. Изменение концентрации цинка составило 0,002 мг/дм³, что можно отнести к погрешности измерения данного показателя в исследуемом водном объекте.

В пункте 1-ПВ концентрация цинка увеличилась с 0,0098 до 0,0126 мг/дм³, незначительный рост вероятно связан с сезонностью и гидрологическим режимом.

В пунктах 3-ПВ и 4-ПВ (р. Еловая пересекающая автодорогу) изменение концентрации цинка было отмечено как выше, так и ниже места пересечения. Концентрация в пункте 3-ПВ увеличилась в 7 раз и составила $0,142 \text{ мг/дм}^3$, в пункте 4-ПВ - в 3,3 раза и составила $0,0102 \text{ мг/дм}^3$.

Исследуемый участок расположен на водосборной площади р. Еловая, привнос в поверхностную воду цинка произошел вероятно с поверхностным и подземным стоком.

Многолетние наблюдения показывают, что средние концентрации цинка находятся в диапазоне: 0.01-0.02 мг/дм³, или 1-2 ПДК.

Медь. По результатам исследований влияния изучаемого объекта на изменение концентрации меди в поверхностных водах не отмечено. В озерах проявляется разная динамика в концентрации меди, в пункте 1-ПВ уменьшение, в пункте 2-ПВ увеличение. В двух данных пунктах концентрации были выше ПДК в оба периода исследования.

В поверхностной воде р. Еловой на первом этапе исследований концентрация меди носила следовые значения, на втором этапе в пункте 3-ПВ (расположенном ниже пересечения с автодорогой) концентрация значительно увеличилась и составила 0,0296 мг/дм³.

В водотоке (р. Еловая) содержание меди варьировалось в широких пределах от следовых количеств (на этапе первичного отбора проб) до превышений ПДК в 17,1 и 29,6 раза (на конечном этапе обследования) в пунктах 4-ПВ и 3-ПВ соответственно. Вероятно, осенний паводок в конечный период обследования

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

с поверхности территорий различных техногенных объектов (добывающая и транспортная инфраструктура). Так как все техногенные объекты имеют обваловки и более высокий уровень над поверхностью земли, а также урез водотока имеет всегда уклон, то ливневые и талые воды имеют тенденцию стекать в данный водоток. Надо отметить, что водоток проходит через обширную систему болот, которые также вносят значительный вклад в гидрохимические показатели воды. В донных отложениях не отмечено значимых концентраций меди, поэтому данные значения концентрации меди в воде имеют разовый характер.

Анализ результатов локального экологического мониторинга выявил превышение ПДК по меди в поверхностных водах, при этом согласно многолетним наблюдениям повышенное содержание меди является природной особенностью территории.

По полученным данным резких колебаний в сторону увеличения концентраций изучаемых показателей не обнаружено, что говорит о благополучии района исследования. Увеличение содержания отдельных показателей связано со снижением общего водного стока в летне-осеннюю межень и увеличением естественного поступления с атмосферными осадками, подземными и болотными водами различных соединений, а также хозяйственной деятельностью человека.

Результаты проведенных исследований по оценке экологического состояния поверхностных вод Приобского месторождения (южная часть) свидетельствуют об их удовлетворительном качестве и отсутствии негативного техногенного влияния экспериментального участка дороги на гидрохимический состав и качество поверхностных вод.

нв. *№ подл.* Подп. и дата Взаи. инв. №

	_				
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Таблица 4.8 - Содержание контролируемых химических элементов в поверхностных водах территории исследования в 2019 г.

поверхне							ьтаты			
		 Норматив ¹	1-I	ТВ	2-ПВ		3-ПВ		4-1	ПВ
Показатель	Ед.из м.		12.07.20 19	09.10.20 19	12.07.20 19	09.10.20 19	12.07.20 19	09.10.20 19	12.07.20 19	09.10.20 19
		H	2580X- 19	4704X- 19	2581X- 19	4705X- 19	2582X- 19	4706X- 19	2583X- 19	4707X- 19
pН	ед.рН	-	5,3	4,79	5,8	4,24	5,1	4,03	5,2	4,02
Нефтепродук ты	мг/дм 3	0,05	0,025	0,112	0,03	0,038	<0,020	0,051	<0,020	0,023
Хлорид-ион	мг/дм 3	300	<0,200	<0,200	0,94	1,27	1,06	1,77	0,88	1,82
Цинк	мг/дм 3	0,01	0,0098	0,0126	0,0168	0,014	0,00275	0,0142	0,0031	0,0102
Свинец	мг/дм 3	0,00 6	0,00038	0,00195	0,000246	0,00071	0,000242	0,00064	<0,0002	0,00056
Кадмий	мг/дм 3	0,00 5	<0,0002	0,00141	<0,0002	0,00129	<0,0002	0,00222	<0,0002	0,00152
Медь	мг/дм 3	0,00	0,0186	0,0107	0,0035	0,0199	0,00089	0,0296	<0,0006	0,00171
Кобальт	мкг/д м ³	10	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Хром	мкг/д м ³	20	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Мышьяк	мкг/д м ³	50	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Ртуть	мкг/д м ³	0,01	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010

 1 Приказ Министерство сельского хозяйства России от 13 декабря 2016 года № 552 «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения» [Приказ Минсельхоза..., 2016].

²Приказ Росгидромета от 31.10.2000 г. №156 «О введении в действие порядка подготовки и представления информации общего назначения о загрязнении окружающей природной среды (с изменениями на 30 декабря 2015 года)» [Приказ Минсельхоза..., 2016]

Примечания: Красным цветом выделены значения контролируемых химических элементов, превышающие $\Pi \not \coprod K_{p_B}$.

Взаи. инв. №	
Подп. и дата	
Инв. № подл.	

ı	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

4.4.2 Экологическая оценка состояния донных отложений

При оценке экологического состояния водных объектов важное значение имеет состояние донных отложений, как среды депонирования загрязняющих веществ, результаты изучения которой свидетельствуют как о предшествующем загрязнении, так и о направленности процессов миграции и трансформации загрязнений.

Отбор проб донных отложений территории участка осуществляли 12.07.2019 г. перед строительством экспериментального участка автодороги (4 пробы) и 09.10.2019 г. после устройства дорожного полотна (4 пробы). На заторфованных участках в озерах преобладают торфянистые отложения, сложенные минерализованным торфом, разной степени разложения темнокоричневого или серовато-коричневого цветов. Ha аллювиально-озерных равнинах в озерах развиты алеврито-илистые или алеврито-песчаные осадки серого цвета с невысоким количеством органического детрита. В крупных реках в прибрежной зоне доминируют средне- и мелкозернистые хорошо сортированные пески светло-серого цвета. Основным источником минеральной части осадков являются размываемые (B береговых уступах ИЛИ подстилающие) четвертичные морские, аллювиальные и озерно-аллювиальные отложения.

Наиболее показательным является загрязнение водного объекта нефтепродуктами (НП), тяжелые фракции которых аккумулируются на дне. При их содержании более 200-300 мг/кг в случае механического воздействия на осадки дна процессов происходит активизация вторичного загрязнения всплытие фрагментов НП на поверхность воды. При отборе проб на обследованной территории подобных явлений не наблюдали.

По результатам лабораторных исследований содержание нефтепродуктов в пробах донных отложений в 2019 г. изменялось в пределах: от 194 до 535 мг/кг в июле, от 206 до 510 мг/кг - в октябре (Табл. 4.9).

Во всех пунктах до и после проведения работ содержание нефтепродуктов в донных отложениях исследуемых водных объектов находилось на одном уровне. Влияния изучаемого объекта в 2019 году не зафиксировано.

По результатам локального экологического мониторинга за 2019 год в пробах, донных отложений, отобранных на постах было установлено содержание

					·
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

нефтепродуктов от <50мг/кг до 145 мг/кг. Данные значения отмечены как на фоновых, так и на контрольных пунктах наблюдения, что может свидетельствовать об отсутствии антропогенного загрязнения.

Xлориды. Обследование водных объектов на содержание хлоридов показало, что до устройства дорожного полотна наиболее высокая концентрация зарегистрирована в пункте 4-ДО (р. Еловая выше места пересечения) — 75 мг/кг, в остальных пунктах значения были на одном уровне (<10-29,4 мг/кг).

Результаты лабораторного анализа проб донных отложений, отобранных после завершения работ, показали увеличение концентрации хлоридов во всех пунктах наблюдения. После проведения работ, максимальная концентрация отмечена в пункте 1-ДО (Озеро без названия в северном направлении) — 2013 мг/кг.

Однозначно судить о негативном влиянии экспериментального участка автодороги на содержание хлоридов в донных отложениях нельзя, так как на водосборах водных объектов расположено много других эксплуатируемых техногенных объектов.

Цинк. В донных отложениях концентрации в июле составляли от 0,68 до 1,02 мг/кг, в октябре — от 1,52 до 2,54 мг/кг. Отмечается повсеместное увеличение концентрации цинка в равных диапазонах. Сравнительно высокие концентрации цинка в донных отложениях некоторых пунктов наблюдения могут быть связаны с его накоплением в процессе разложения органического вещества в течение теплого периода года.

Свинец. Превышения концентрации валовой формы свинца в пробах на втором этапе исследований в октябре зафиксировали во всех пунктах отбора проб. Содержание валовой формы свинца варьируется в пределах от 2,29 до 4,1 мг/кг.

Концентрация во всех пунктах выросла в равных пределах. Все остальные показатели (кадмий, кобальт, медь и хром) во всех пробах были ниже предела обнаружения МВИ.

Для исключения возможного негативного воздействия объекта на природные водоемы, в 2019 году проведен локальный экологический мониторинг состояния донных отложений Приобского лицензионного участка (южная часть), который позволил установить, что содержание химических элементов в условно-фоновых и

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

контрольных пунктах мониторинга находится на сопоставимом с региональным фоном уровне и свидетельствует об отсутствии антропогенного загрязнения.

Таблица 4.9 - Содержание контролируемых химических элементов в донных отложениях территории исследования в 2019 г.

				Резул	ьтаты			
Показатель,	1-2	ОД	2-)	ОД	3-)	ДО	4-,	ОД
ед. изм	12.07.201 9	09.10.201 9	12.07.201 9	09.10.201 9	12.07.201 9	09.10.201 9	12.07.201 9	09.10.201 9
	2584X-19	4708X-19	2585X-19	4709X-19	2586X-19	4710X-19	2587X-19	4711X-19
Нефтепродукт ы, мг/кг ^{-1*}	364	348	535	510	237	221	194	206
рН, ед.рН	6,97	5,07	6,2	4,61	6,21	5,1	6,06	5,06
Хлорид-ион мг/кг	<10,0	2013	29,4	445,3	<10,0	103,1	75,1	205,2
Цинк (подвижная форма), мг/кг	0,71	1,88	0,68	2,54	1,02	1,96	0,81	1,52
Кадмий (подвижная форма), мг/кг	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Кобальт (подвижная форма), мг/кг	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Медь (подвижная форма), мг/кг	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Хром (подвижная форма), мг/кг	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Свинец (подвижная форма), мг/кг	<0,5	3,9	<0,5	3,9	<0,5	4,1	<0,5	2,29
Мышьяк (валовая форма), мг/кг	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Ртуть, мг/кг	0,0135	<0,005	0,006	<0,005	0,0115	<0,005	0,0085	<0,005

* Постановление Правительства ХМАО-Югры от 22.07.2016 г. №270-п «О внесении изменений в приложение к постановлению Правительства Ханты-Мансийского автономного округа - Югры от 10 ноября 2004 года N 441-п "Об утверждении регионального норматива "Предельно допустимый уровень содержания нефти и нефтепродуктов в донных отложениях поверхностных водных объектов на территории Ханты-Мансийского автономного округа - Югры"» - безопасное содержание нефтепродуктов в илисто-песчаных донных отложениях составляет менее 20.

Инв. № подл. Подп. и дата Вз

		·			·
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Отбор проб почвенного покрова осуществлялся в районе работ 12.07.2019 г. перед строительством экспериментального участка автодороги (3 объединенные пробы) и 09.10.2019 г. после устройства дорожного полотна (3 объединенные пробы).

Основными нормативами при оценке экологического состояния почвенного покрова участка служили ПДК (ОДК) загрязняющих веществ в почвах (Табл. 4.10).

В почвенном покрове изучаемого участка в 2019 г. зарегистрировали высокое содержание нефтепродуктов. Показатели хром, кадмий, медь, кобальт, мышьяк были ниже предела обнаружения МВИ.

Проведенные исследования показали, что изученные образцы почвы отобранные в пунктах наблюдения расположенных вблизи объекта изучения содержат нефтепродукты (НП), их концентрация при оценке в июле изменялась от 368 до 1145 мг/кг, в октябре от 795 до 2270 мг/кг.

Полученные результаты отражают сезонную динамику концентрации нефтепродуктов в почвенном покрове территории исследования. Согласно «Методическим рекомендации по выявлению деградированных и загрязненных земель» [Методические рекомендации..., 1995], низким считается уровень 1000 до 2000 мг/кг. загрязнения почв нефтепродуктами OT Bo МНОГОМ значительные концентрации НΠ В почвах района работ обусловлены содержанием веществ естественного происхождения: растительность территории обогащена высокомолекулярными соединениями (смолами). Кроме того, в процессе торфообразования образуются природные соединения углеводородов. Этот вывод подтверждается результатами сопряженного анализа различного типа: повышенные концентрации нефтепродуктов отмечались лишь в торфяных почвах.

Полученные результаты говорят о естественном и антропогенном повышении геохимического фона нефтепродуктов в почве. В связи с общей тенденцией увеличения концентрации нефтепродуктов в пунктах наблюдения, возможно, это вызвано, как антропогенным влиянием, так и сезонными колебаниями концентрации нефтепродуктов.

L						
ĺ	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Концентрация ртути (Hg) в отобранных пробах почвы до начала работ составляла — от 0,009 до 0,0125 мг/кг. В октябре, после окончания работ концентрация ртути снизилась ниже предела обнаружения МВИ во всех пунктах наблюдения, что связано с сезонной динамикой данного показателя на исследуемой территории.

Обратная динамика проявляется в отношении концентраций свинца в пробах почвенного покрова. В период отбора проб в июле концентрация свинца была ниже предела обнаружения МВИ. В октябре концентрация свинца составила от 1,58 до 5 мг/кг, что ниже ПДК (6 мг/кг). Увеличение отмечено во всех пунктах наблюдения.

Содержание цинка (Zn) в почвенном покрове до проведения работ изменялось от <0,5 до 0,64 мг/кг, результаты анализа проб почвенного покрова, отобранных после завершения устройства дорожного полотна, показали увеличение концентрации цинка в пределах от 3,08 до 4,8 мг/кг.

Следует отметить, что концентрация цинка так же увеличилась и в фоновом пункте наблюдения (3-ПП), что может свидетельствовать о сезонной динамике данного показателя на исследуемой территории.

Содержание остальных исследуемых химических элементов в почвенном покрове исследуемой территории в 2019 г. было ниже установленных нормативов и предела обнаружения МВИ.

Инв. № подл.

Изм. Кол.уч Лист № док. Подп. Дата

2020/070-0BOC

	Норматив*	тив [*] Результаты						
	(валовая	1-I	Ш	2-I	ΙП	3-I	ΙП	
Показатель, ед. изм.	форма / подвижная форма)	12.07.2019	09.10.2019	12.07.2019	09.10.2019	12.07.2019	09.10.2019	
	1 1 /	2588X-19	4712X-19	2589X-19	4713X-19	2590X-19	4714X-19	
рН, ед.рН	-	4,3	4,0	4,8	4,3	4,7	4,4	
Нефтепродукты, мг/кг	1000**/***	446	2270	1145	1858	368	795	
Свинец (подвижная форма), мг/кг	32,0 / 6,0	<0,5	5	<0,5	1,58	<0,5	4,4	
Цинк (подвижная форма), мг/кг	220,0 / 23,0	0,64	3,08	<0,5	4,8	0,61	4,7	
Хром (подвижная форма), мг/кг	- / 6,0	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
Кадмий (подвижная форма), мг/кг	1,0 / 1,0	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
Медь (подвижная форма), мг/кг	55,0 / 3,0	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
Кобальт (подвижная форма), мг/кг	- / 5,0	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
Мышьяк (валовая форма), мг/кг	2,0 / -	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
Ртуть, мг/кг	2,1 / -	0,01	<0,005	0,0125	<0,005	0,009	<0,005	

Примечание:

Примечание. Красным цветом выделены значения контролируемых химических элементов, превышающие ПДК.

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

^{*}Гигиенические нормативы ГН 2.1.7.2041-06 «Предельно допустимые концентрации (ПДК) химических веществ в почве»;

^{** «}Методическими рекомендациями по выявлению деградированных и загрязненных земель»

^{***} Постановление Правительства Ханты-Мансийского автономного округа-Югры от 10.12.2004г. № 466-п «Об Утверждении регионального норматива "Допустимое остаточное содержание нефти и нефтепродуктов в почвах после проведения рекультивационных и иных восстановительных работ на территории ХМАО-Югры"» - максимальное региональное содержание нефтепродуктов составляет: 1000 мг/кг для аллювиальных болотных иловато-торфяных и 5000 м/кг для дерново-подзолистых, дерноволуговых почв.

Отбор проб подземных вод с территории участка осуществлялся в соответствии с техническим заданием в пунктах отбора проб почвенного покрова: 12.07.2019 г. перед строительством экспериментального участка автодороги (3 объединенные пробы) и 09.10.2019 г. после устройства дорожного полотна (3 объединенные пробы). Результаты контролируемых химических элементов в подземной (грунтовой) воде исследуемой территории в 2019 году приведены в таблице 4.11.

Нефтепродукты были обнаружены в двух пунктах наблюдения: в июле – пункт 2-ПодВ $(0,056 \text{ мг/дм}^3)$, в октябре – пункт 3-ПодВ $(0,052 \text{ мг/дм}^3)$. В остальных пунктах концентрация была ниже предела обнаружения МВИ.

Из азотистых соединений в пробах подземной воды определяли азот аммонийный (NH_4^+). На первом этапе концентрации были на уровне 0,115 — 0,136 мг/дм³. На втором этапе наблюдений концентрация аммонийного азота в подземной воде выросла во всех пунктах и составила 0,31-0,44 мг/дм³, что можно объяснить естественными колебаниями в природной среде. Азотистые соединения чаще всего являются продуктами распада органических веществ, гниения растительных и животных остатков.

Из металлов в пробах подземной воды были зарегистрированы цинк и свинец, кадмий, медь. Остальные исследуемые металлы имели концентрацию ниже предела обнаружения МВИ.

В рамках локального экологического мониторинга Приобского месторождения (южная часть), проведенного в 2019 г., оценка состояния подземных вод не осуществлялась.

нв. № подл. Подп. и дата Взаи. инв. №

Изі	и.	Кол.уч	Лист	№ док.	Подп.	Дата

Таблица 4.11 - Содержание контролируемых химических элементов в подземной (грунтовой) воде территории исследования в 2019 г.

		Результат								
Показатель	Норматив	1-Π	одВ	2-П	одВ	3-ПодВ				
		12.07.2019	09.10.2019	12.07.2019	09.10.2019	12.07.2019	09.10.2019			
		2577X-19	4701X-19	2578X-19	4702X-19	2579X-19	4703X-19			
рН, ед.рН	-	5,1	3,69	4,7	3,52	4,6	3,58			
Перманг. окисляемость, $M\Gamma O_2/JM^3$	-	68	67	67	66	68	66			
Аммоний-ион, мг/дм ³	1,5	0,129	0,37	0,136	0,44	0,115	0,31			
Нефтепродукты, мг/дм ³	0,3	<0,040	<0,040	0,056	<0,040	<0,040	0,052			
Цинк, мг/дм ³	1	0,007	0,0095	0,009	0,051	0,0051	0,0082			
Свинец, мг/дм ³	0,01	0,00043	0,00072	0,00071	0,00102	0,00056	0,00035			
Кадмий, мг/дм ³	0,001	<0,0002	0,0005	<0,0002	0,035	<0,0002	0,00204			
Медь, $M\Gamma/дM^3$	1	<0,0006	0,0063	<0,0006	0,0109	0,00067	0,0154			
Кобальт, мкг/дм ³	100	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0			
Хром, мкг/дм ³	50	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0			
Мышьяк, мкг/дм ³	10	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0			
Ртуть, мкг/дм ³	0,5	<0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010			
Запах 20, балл	-	5	4	2	3	5	3			
Запах 60, балл	-	5	5	3	4	5	5			
Мутность, ЕМФ	-	48,3	36,1	27,8	28,7	31,6	64,2			

Примечание:

Жирным шрифтом красного цвета выделены значения контролируемых химических элементов, превышающие $\Pi J K_{pB}$.

Инв. № подл.	Подп. и дата	Взаи. инв. №

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

 $^{^{1}}$ Гигиенические нормативы «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. ГН 2.1.5.1315-03» [Постановление Минздрава РФ №79, 2003]

Результаты определения содержания *цинка* в пробах подземной воды не позволили выявить закономерностей зафиксированных концентраций от пунктов наблюдения и периода отбора. После проведения работ концентрация цинка в подземных водах увеличилась, максимально в пункте 2-ПодВ и составила 0,051 мг/дм³.

Концентрация *свинца* в природных водах обычно не превышает 10 мг/л, что обусловлено его осаждением и комплексообразованием с органическими и неорганическими лигандами; интенсивность этих процессов во многом зависит от рН. Увеличение концентраций свинца с 0,00043до 0,00072 мг/л и с 0,00071 до 0,00102 мг/л отмечали для пунктов 1-ПодВ и 2-ПодВ соответственно, в фоновом пункте 3-ПодВ наблюдали обратную динамику, такие значения могут быть обусловлены погрешностью измерения.

Концентрация кадмия во всех пробах, отобранных в июле, была ниже предела обнаружения МВИ ($<0.002 \text{ мг/дм}^3$), в октябре в пунктах 1-ПодВ и 3-ПодВ отмечено повышение концентрации до 0,0005 и 0,00204 соответственно. Значительно увеличилась концентрация кадмия в пункте наблюдения 2-ПодВ – 0,035 мг/дм 3 .

Данное значение свидетельствует о техногенном воздействии, но следует отметить, что концентрация кадмия в пробе строительного грунта «БРИТ» была ниже предела обнаружения МВИ. Таким образом, влияние объекта изучения на состояние подземных вод маловероятно. Загрязнение может быть связано с антропогенными объектами находящимися в пределах данного пункта наблюдения.

Медь. В анализе полученных данных по концентрации меди отмечали динамику увеличения концентраций от июля к октябрю во всех пунктах наблюдения. Значения в октябре варьировались от 0,0063 до 0,0154 мг/дм³, превышения ПДК отсутствовали.

Таким образом, анализ экологического состояния подземных вод не выявил прямого воздействия объекта изучения. Территория исследования находится в зоне активного антропогенного воздействия.

В рамках локального экологического мониторинга Приобского месторождения (южная часть), проведенного в 2019 г., оценка состояния подземных вод не осуществлялась.

4.4.5. Анализ строительного грунта «БРИТ»

Для оценки качества и экологической безопасности строительного грунта «БРИТ» был выполнен отбор проб и последующий лабораторный анализ образцов. Одним из базовых компонентов для производства строительного грунта был шлам буровой.

Таблица 4.12 - Содержание контролируемых химических элементов в строительном грунте «БРИТ» в 2019 г.

	Норматив	Результат
Показатель	(технология	1-Грунт
	"БРИТ")	11.11.19
	KXA	517-19
рН, ед. рН	Не	11.9
рп, сд. рп	нормируется	11.7
Свинец (подвижная форма), мг/кг	≤6,0	<0,5
Медь (подвижная форма), мг/кг	≤3,0	<0,5
Кадмий (подвижная форма), мг/кг	≤1,0	<0,5
Мышьяк (валовое содержание), мг/кг	≤2,0	<0,5
Кобальт (подвижная форма), мг/кг	≤5,0	<0,5
Хром (подвижная форма), мг/кг	≤6,0	<0,5
Цинк (подвижная форма), мг/кг	≤23,0	<0,5
Ртуть (валовое содержание), мг/кг	≤2,1	0,027

Пробы строительного грунта «БРИТ» отбирали и анализировали в затвердевшем состоянии (11.11.2019 г).

Водородный показатель составил 11,9 ед.рН - практически максимальный уровень.

Концентрации всех тяжелых металлов в подвижной форме в пробе были ниже предела определения и не превышали показателей, установленных в ТУ 23.99.13.123-015-77310225-2020.

Исходя из полученных данных, можно сделать вывод о том, что строительный грунт «БРИТ» не токсичен, инертен и не приводит к эмиссии загрязняющих веществ в окружающие природные среды.

		·			
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Основными компонентами в составе шлама бурового, используемого при получении строительного грунта «БРИТ», способными оказывать негативное воздействие на микрофлору почв и иные объекты окружающей среды, являются нефтепродукты, минеральные соли и ионы тяжелых металлов. Разработанная новая Технология устройства конструктивных слоев дорожной одежды на основе строительного грунта «БРИТ» позволила минимизировать негативное воздействие компонентов шлама бурового на объекты окружающей среды. Данный результат достигается за счет создания щелочной среды в грунте «БРИТ», что способствует переводу ионов тяжелых металлов в нерастворимые формы. При отверждении строительного грунта «БРИТ» он становится инертным, создается плотная, гидрофобная среда, которая препятствует вымыванию загрязняющих веществ в природные среды.

Результаты лабораторного анализа показали, что участок дороги на основе строительного грунта «БРИТ» оказывает незначительное воздействие на природные объекты.

Состояние изученных природных сред по различным показателям загрязнения на исследуемой территории, можно оценить как удовлетворительное. Существенных признаков ухудшения состояния окружающей среды, в сравнении с фоновым (до начала строительства) периодом исследования, не выявлено.

Рекомендуется распределять количество пунктов наблюдения исходя из условий изучаемой территории — пара контрольных пунктов наблюдения (по одному с каждой стороны): в начале, в середине и в конце экспериментального участка автодороги длиной не более 10 км. Помимо контрольных пунктов наблюдения должен быть включен условно-фоновый пункт наблюдения, расположенный в сходных природных условиях. При увеличении длины экспериментального участка необходимо пропорционально увеличить количество пунктов наблюдения для построения условной сети обследования (на каждое увеличение до 10 км добавить пару пунктов наблюдения — по одному с каждой

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Взаи. инв. №

2020/070-0BOC

стороны дороги). Строительный грунт «БРИТ» анализируют согласно требованиям технических условий ТУ 23.99.13.123-015-77310225-2020.

Последующие работы по экологическому мониторингу после завершения строительства участка дорожного покрытия, обустроенного с применением строительного грунта «БРИТ» рекомендуется проводить в соответствии с действующими нормативно-правовыми актами на территории исследования.

Рекомендуется проанализировать по справочным и архивным данным воздействие действующей инфраструктуры и определить стороннюю техногенную нагрузку на природную среду. Исходя из того, что вдоль участка автодороги проходят нефтепроводы и водоводы, на которых могут произойти или в предыдущие годы происходили аварии, TO результаты экологического мониторинга могут быть искажены. Поэтому необходимо до начала работ информацию о состоянии действующих И бездействующих трубопроводов, расположенных в районе участка экспериментальной дороги позволит уточнить интерпретацию воздействия участка автодороги.

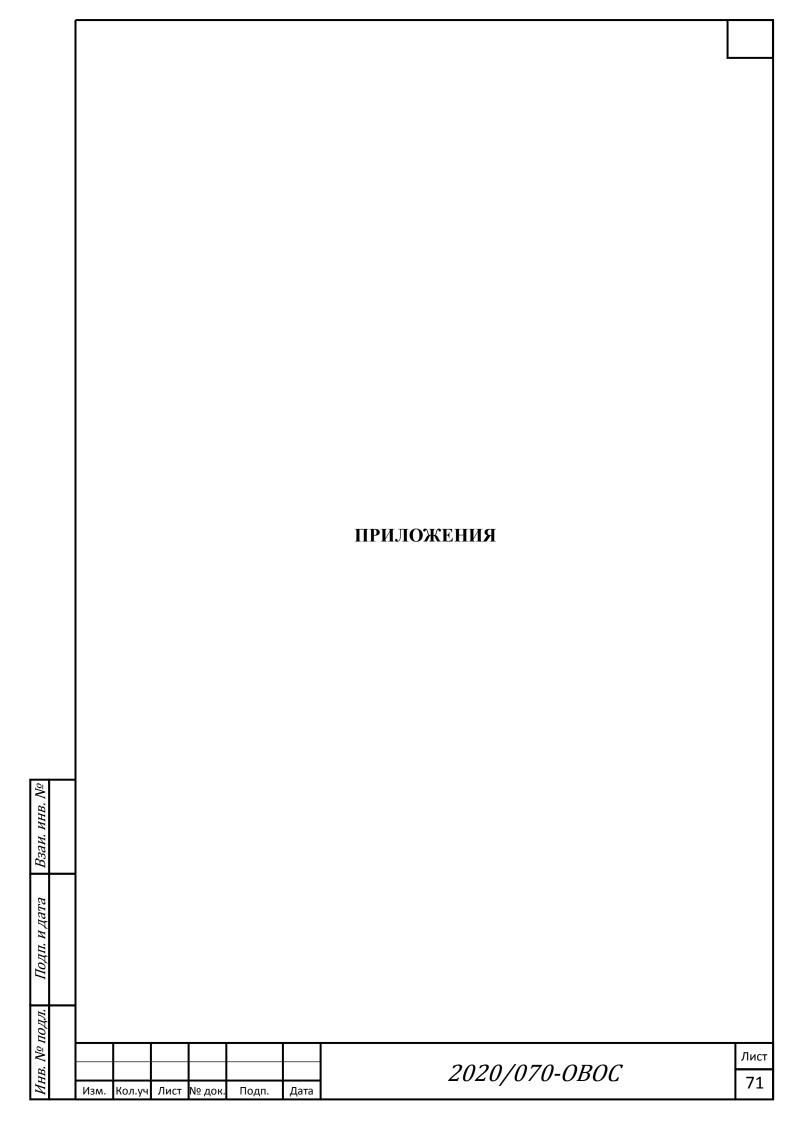
Взаи. инв. №	
Подп. и дата	
нв. № подл.	

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

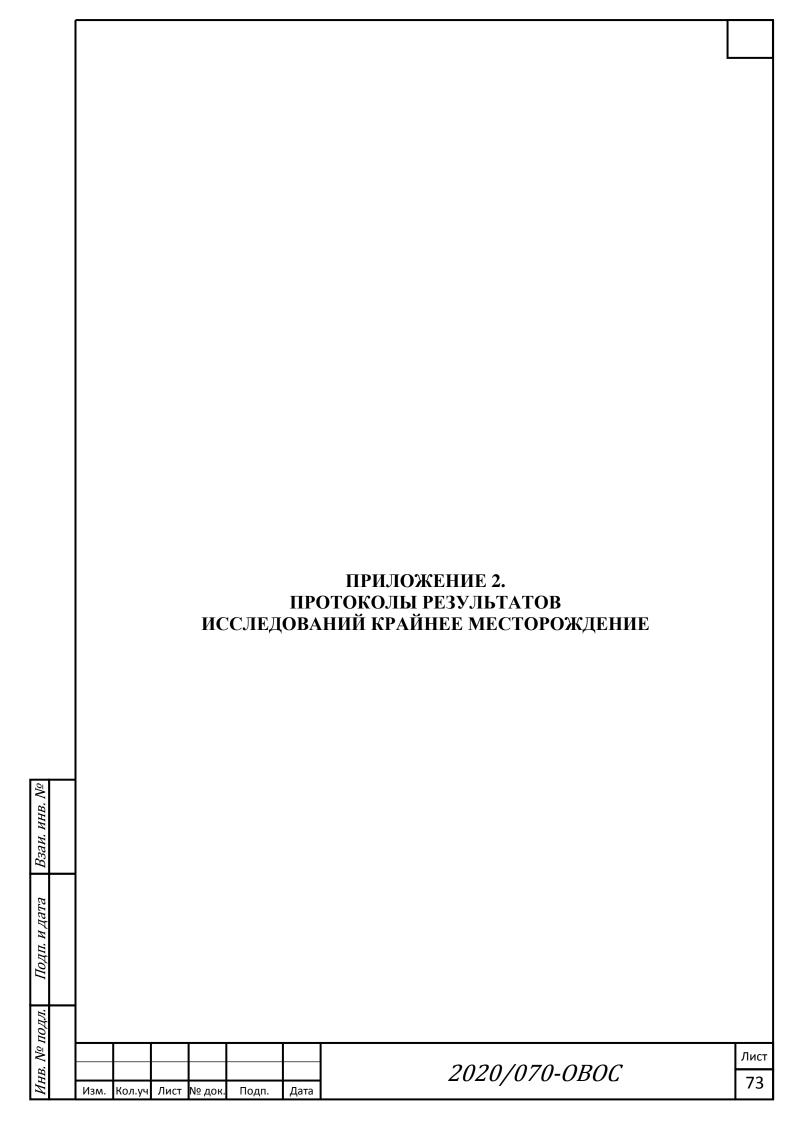
- 2. ГОСТ 17.1.5.05-85 «Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков»
- 3. ГОСТ 17.1.3.05-82 «Общие требования к охране поверхностных и подземных вод от загрязнения нефтью и нефтепродуктами»
- 4. ГОСТ 17.1.3.07-82 «Правила контроля качества воды водоемов и водотоков»
- 5. ГОСТ 17.1.3.13-86 «Общие требования к охране поверхностных вод от загрязнения»
- 6. ГОСТ 17.1.5.01-80 «Охрана природы. Гидросфера. Общие требования к отбору проб донных отложений водных объектов для анализа на загрязненность»
- 7. ГОСТ 17.1.5.04-81 «Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод»
- 8. ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб»
- 9. ГОСТ 17.4.3.03-85. Охрана природы. Почвы. Общие требования к методам определения загрязняющих веществ.
- 10. ГОСТ 17.4.2.01-81. Охрана природы. Почвы. Номенклатура показателей санитарного состояния
- 11. ГОСТ 17.4.4.02-2017 Охрана природы (ССОП). Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа.
- 12. ГОСТ 25100-2011. Грунты. Классификация (с Поправкой)
- 13. ГОСТ 8736-2014. Межгосударственный стандарт. Песок для строительных работ. Технические условия.
- 14. ГОСТ 3344-83. Межгосударственный стандарт. Щебень и песок шлаковые для дорожного строительства. Технические условия.
- 15. ГОСТ 5180-2015. Грунты. Методы лабораторного определения физических характеристик.
- 16. ПНД Ф 14.1:2:4.111-97 Количественный химический анализ вод. Методика измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом
- 17. ПНД Ф 14.1:2:4.261-10 Количественный химический анализ вод. Методика выполнения измерений массовой концентрации сухого и прокаленного остатков в пробах питьевых, природных и сточных вод гравиметрическим методом.
- 18. ГОСТ 26423-85. Почвы. Методы определения удельной электрической проводимости, рН и плотного остатка водной вытяжки.
- 19. ПНД Ф 16.1:2.2.22-98 Количественный химический анализ почв. Методика выполнения измерений массовой доли нефтепродуктов

Γ						
r						
r	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

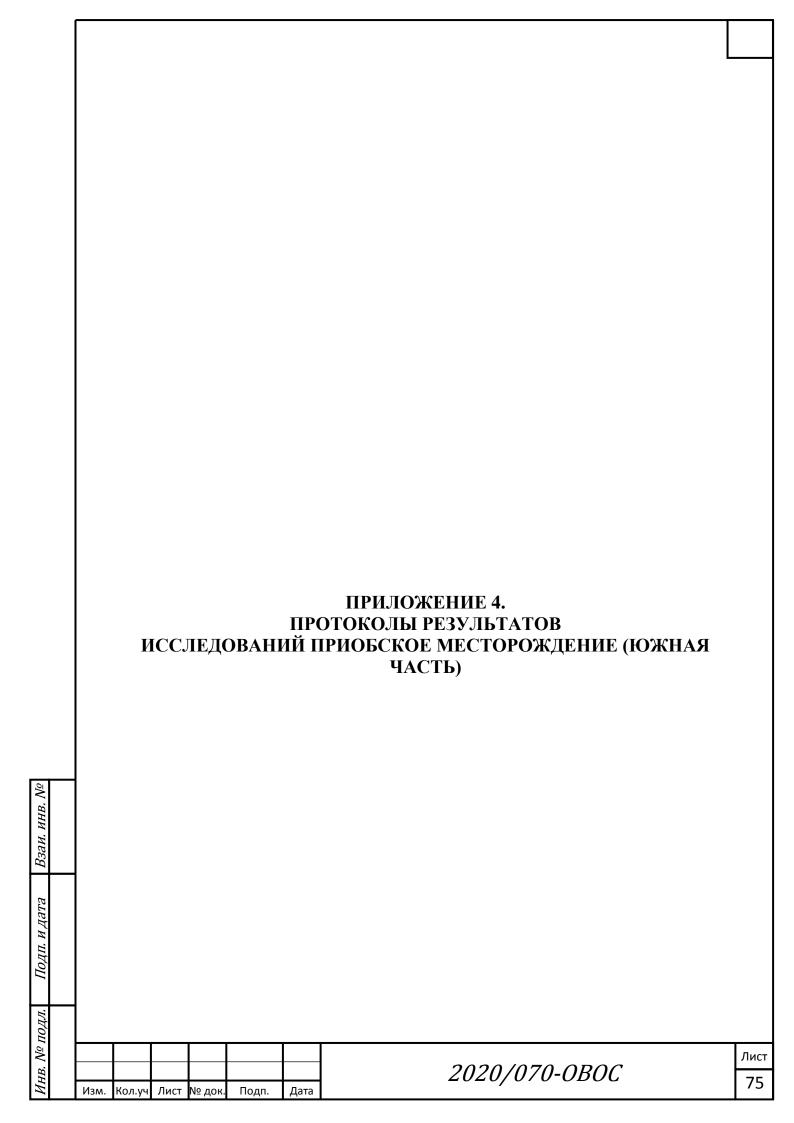
Взаи. инв.

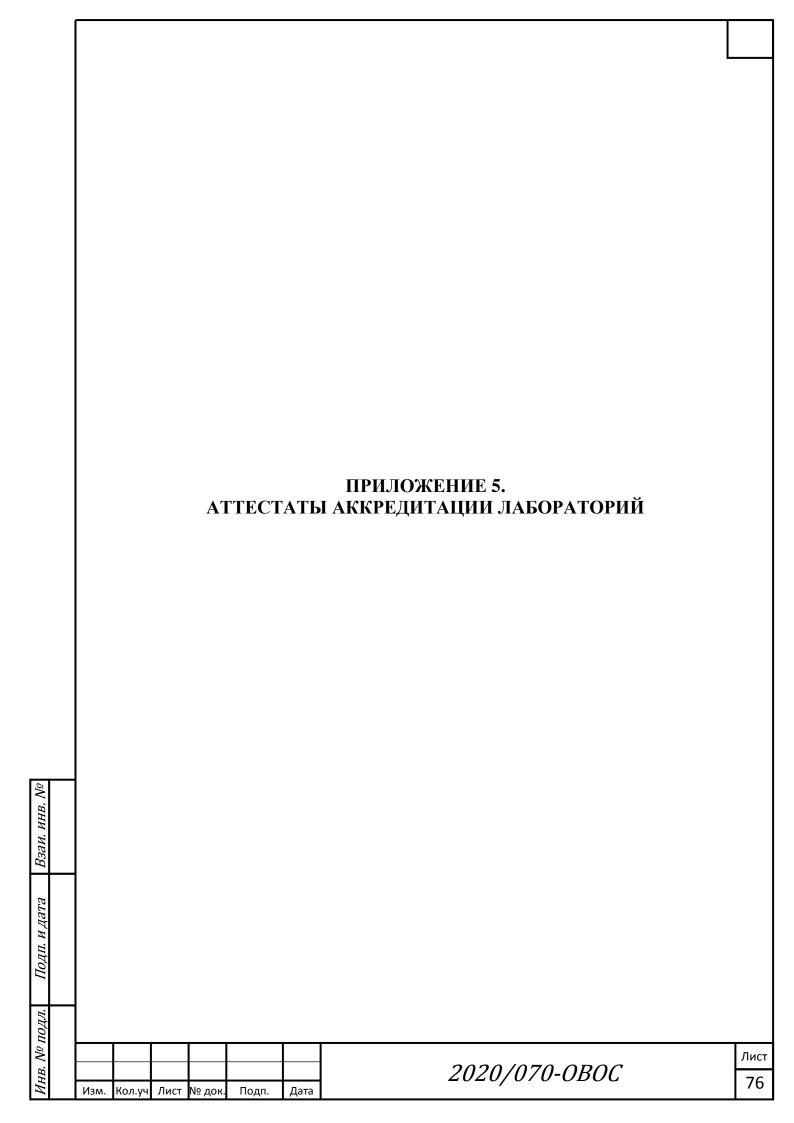

Подп. и дата

2020/070-0BOC


- в минеральных, органогенных, органоминеральных почвах и донных отложениях методом ИК-спектрометрии.
- 20. РД 52.18.685-2006 Методические указания. Определение массовой доли металлов в пробах почв и донных отложений. Методика выполнения измерений методом атомно-абсорбционной спектрофотометрии.
- 21. ГОСТ 30108-94. Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов (с Изменениями № 1, 2)

№ подл. Подп. и дата Взаи. инв. №


Изм.	Кол.уч	Лист	№ док.	Подп.	Дата



				A TOTAL		SOD A	ПРИЛОЖЕНИЕ 1.	
				AK I .	ыон	OPA	А ПРОБ КРАЙНЕЕ МЕСТОРОЖДЕНИЕ	
tB. Nº								
Взаи. инв. №								
П								
Подп. и дата								
Тодп. и								
<u>г</u> тош _{ō₁}								Τ_
Инв. № подл.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	2020/070-0BOC	Лист 72
• 1	 			~		1 1		

							приложение 3.	
		AK	ТЫ	ОТБ	ОРА П	РОБ	ПРИОБСКОЕ МЕСТОРОЖДЕНИЕ (ЮЖНАЯ ЧАСТЬ)	
$ar{o}N$								
Взаи. инв. №								
Взаи								
та								
Подп. и дата								
Под								
ДЛ.								
Инв. № подл.							2022/272 2722	Лист
Инв.	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	2020/070-0BOC	74

