Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Пермский национальный исследовательский политехнический университет»

Кафедра «Механика композиционных материалов и конструкций»

Е.Ю. Макарова

РАСЧЕТ НА ПРОЧНОСТЬ ВАЛА ПРИ ИЗГИБЕ С КРУЧЕНИЕМ

Методические указания к выполнению курсовой работы

Издательство
Пермского национального исследовательского политехнического университета
2025

Репензент:

д-р техн. наук, профессор *М.Н. Каченюк* (Пермский национальный исследовательский политехнический университет)

Макарова, Е.Ю.

М15 Расчет на прочность вала при изгибе с кручением: метод. указания к выполнению курсовой работы / Е.Ю. Макарова; ФГАОУ ВО «Пермский национальный исследовательский политехнический университет». – Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2025. – 28 с.

ISBN 978-5-398-03334-2

Приведены рекомендации к выполнению курсовой работы по дисциплине «Сопротивление материалов». Рассматривается типовая курсовая работа на тему «Расчет на прочность вала при изгибе с кручением». Она включает в себя работу с источниками информации, составление расчетной схемы, расчеты, аналитическое и графическое представление результатов и вывод о рациональности проектирования. Приведен пример выполнения.

Предназначено для студентов, обучающихся по направлению бакалавриата 22.03.01 «Материаловедение и технологии материалов».

УДК 539.3

СОДЕРЖАНИЕ

Введение	4
1 Задание для курсовой работы	5
2 Пример расчета валов на прочность	11
3 Контрольные вопросы	20
4 Требования к оформлению и способам представления результатов	21
Заключение	22
Список использованных источников	23
Приложение А. Справочные материалы	24
Приложение Б. Образец титульного листа	27

ВВЕДЕНИЕ

Как показывает анализ причин отказов технических систем, более чем в 70 % случаев разрушения связаны с усталостным повреждением элементов машин, оборудования и сооружений [1]. Такое положение объясняют спецификой явления многоцикловой усталости, в частности:

- зарождением и развитием трещин при относительно низких напряжениях;
- чувствительностью к различным конструкторским, технологическим факторам;
- значительным рассеянием характеристик выносливости по сравнению с характеристиками статической прочности;
- локальным и избирательным характером зарождения трещин и их развитием без проявления видимых остаточных перемещений вплоть до момента возникновения аварийных ситуаций.

Поэтому актуальной становится проблема предотвращения усталостных разрушений ответственных деталей.

В связи с этим выполняется типовая курсовая работа на тему «Расчет на прочность вала при изгибе с кручением». Курсовая работа состоит из следующих частей:

- 1. Расчет на прочность вала при изгибе с кручением.
- 2. Расчет вала на сопротивление многоцикловой усталости.

Курсовая работа предполагает следующую структуру: работа над источниками информации с использованием электронных ресурсов https://www.elibrary.ru, https://elib.pstu.ru, составление расчетной схемы, проведение расчетов, аналитическое и графическое представление результатов решения с использованием программ КОМПАС, ЛОГОС, вывод о рациональности проектирования.

Курсовые работы по дисциплине «Сопротивление материалов» являются индивидуальными: расчетные схемы и числовые данные для каждого задания выбираются по шифру, который выдается преподавателем и состоит из двух цифр (первая соответствует номеру расчетной схемы, вторая – номеру строки в таблице с исходными данными).

Перед выполнением каждого задания необходимо полностью выписать его условие с исходными данными и составить аккуратный эскиз, на котором указать в числах все необходимые для расчета величины.

Все пункты и этапы в тексте курсовой работы снабжаются заголовками и необходимыми пояснениями. Вычисления и окончательные результаты должны быть записаны в Международной системе единиц (СИ).

Сначала необходимо решать задачи в алгебраической форме, пользуясь стандартными буквенными обозначениями, а затем подставлять числа. При подстановке различных величин их размерность не указывается, но результат вычислений обязательно должен иметь соответствующую размерность в системе СИ. Нет необходимости вести расчет с большим числом значащих цифр. Точность счета должна ограничиваться двумя цифрами после запятой.

Получив незачтенную работу, студент должен исправить все отмеченные ошибки, выполнив указания преподавателя, и в кратчайший срок сдать работу повторно.

1 ЗАДАНИЕ ДЛЯ КУРСОВОЙ РАБОТЫ

Часть I Расчет вала на прочность при изгибе с кручением

Для ведущего вала прямозубой цилиндрической передачи редуктора с двумя зубчатыми колесами (рисунок 1) с диаметрами D_1 и D_2 , передающего мощность P, кВт, при угловой скорости ω , рад/с (числовые значения этих величин для своего варианта взять из таблицы 1), необходимо выполнить следующее:

- 1) определить вертикальные и горизонтальные составляющие реакций подшипников;
 - 2) построить эпюру крутящих моментов;
- 3) построить эпюры изгибающих моментов в вертикальной и горизонтальной плоскостях;

4) определить диаметр вала d из условия прочности, полагая, что силы $F_{r1}=0.4F_1$; $F_{r2}=0.4F_2$.

Стандартные диаметры валов в диапазоне 20–125 мм следующие: 20; 21; 22; 24; 25; 26; 28; 30; 32; 34; 36; 38; 40; 42; 46; 48;50; 52; 55; 60; 63; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 120; 125.

Допускаемый коэффициент запаса прочности [n] = 1,8.

Расчет диаметра вала следует производить для схем 1, 3, 5, 7, 9 (см. рисунок 1) по гипотезе потенциальной энергии формоизменения, для схем 0, 2, 4, 6, 8 по гипотезе наибольших касательных напряжений. Все размеры на рисунке 1 (схемы 0–9) даны в миллиметрах.

По гипотезе наибольших касательных напряжений (третья гипотеза прочности)

$$M_{\text{\tiny 9KBIII}} = \sqrt{M_{\text{\tiny H}}^2 + M_{\text{\tiny K}}^2},$$

где $M_{_{_{9{\rm KB}}}}$ — эквивалентный момент; $M_{_{\rm H}}$ — изгибающий момент; $M_{_{
m K}}$ — крутящий момент.

По гипотезе потенциальной энергии формоизменения (четвертая гипотеза прочности)

$$M_{_{^{9{
m KBIV}}}} = \sqrt{M_{_{^{\rm II}}}^2 + 0,75 M_{_{
m K}}^2} \,.$$

Часть II Расчет вала на сопротивление многоцикловой усталости

Необходимо изменить расчетную схему, считая, что вал ступенчатый; все остальные параметры оставить без изменения.

Марка углеродистой конструкционной стали, из которой должен быть изготовлен вал, и состояние его поверхности приведены в таблице 1. Радиус галтели ρ в переходных сечениях от большего диаметра D к меньшему диаметру d принять равным 0.5(D-d). Выполнить следующее:

1. Определить диаметры вала из условия статической прочности в указанных сечениях и спроектировать ступенчатый вал,

округлив диаметры ступеней до стандартного размера. Стандартные диаметры валов в диапазоне 20–125 мм следующие: 20; 21; 22; 24; 25; 26; 28; 30; 32; 34; 36; 38; 40; 42; 46; 48;50; 52; 55; 60; 63; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 120; 125.

2. Определить фактический запас прочности вала при циклических нагрузках.

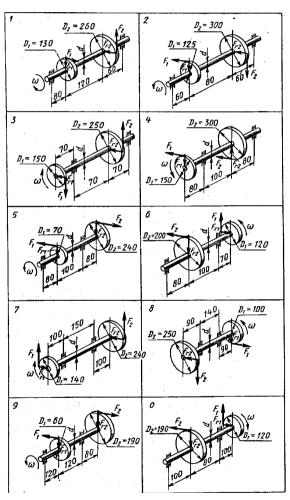


Рисунок 1 – Схемы 0–9

Таблица 1 – Исходные данные

Номер схемы Номер		Марка	Р,	ω,	Качество обработки
(рисунок 1)	строки	стали	кВт	рад/с	поверхности
	0	10	6	22	1
	1	20	8	36	2
	2	30	10	40	3
	3	35	9	30	4
1	4	45	3	45	5
1	5	50	20	50	1
	6	20X	12	68	2
	7	40X	5	20	3
	8	30XM	3	50	4
	9	40XH	8	42	1
	0	10	3	25	1
	1	20	8	48	2
	2	30	10	50	3
	3	35	12	40	4
2	4	45	22	24	5
2	5	50	20	60	1
	6	20X	20	22	2
	7	40X	9	36	3
	8	30XM	8	42	4
	9	40XH	12	48	5
	0	10	10	30	1
	1	20	20	80	2
	2	30	15	45	3
	3	35	12	38	4
3	4	45	14	18	5
3	5	50	8	42	1
	6	20X	10	45	2
	7	40X	18	22	3
	8	30XM	25	40	4
	9	40XH	5	42	5
	0	10	5	40	1
	1	20	6	36	2
4	2	30	7	35	3
	3	35	12	24	4
	4	45	15	15	5

Продолжение таблицы 1

Номер схемы Номер		Марка	Р,	ω,	Качество обработки
(рисунок 1)	строки	стали	кВт	рад/с	поверхности
	5	50	12	32	1
	6	20X	9	42	2
4	7	40X	10	45	3
	8	30XM	7	21	4
	9	40XH	20	36	5
	0	10	5	18	1
	1	20	20	18	2
	2	30	12	30	3
	3	35	24	30	4
5	4	45	6	24	5
3	5	50	12	52	1
	6	20X	3	15	2
	7	40X	15	45	3
	8	30XM	19	50	4
	9	40XH	20	25	5
	0	10	20	45	1
	1	20	19	38	2
	2	30	21	15	3
	3	35	18	26	4
6	4	45	15	18	5
O	5	50	16	50	1
	6	20X	8	30	2
	7	40X	7	20	3
	8	30XM	10	24	4
	9	40XH	13	48	5
	0	60	4	35	1
	1	10	20	15	2
	2	20	18	20	3
	3	30	16	18	4
7	4	35	30	24	5
7	5	45	25	30	1
	6	50	22	28	2
	7	20X	15	18	3
	8	40X	8	42	4
	9	30XM	10	12	5

Окончание таблицы 1

Номер схемы	Номер	Марка	Р,	ω,	Качество обработки
(рисунок 1)	(рисунок 1) строки		кВт	рад/с	поверхности
	0	10	16	40	1
	1	20	30	50	2
	2	30	28	42	3
	3	35	20	38	4
8	4	45	15	20	5
8	5	50	18	30	1
	6	20X	22	30	2
	7	40X	27	35	3
	8	30XM	24	28	4
	9	40XH	4	20	5
	0	10	12	38	1
	1	20	15	42	2
	2	30	10	32	3
	3	35	20	50	4
9	4	45	23	18	5
9	5	50	14	24	1
	6	20X	16	20	2
	7	40X	24	15	3
	8	30XM	26	25	4
	9	40XH	6	48	5
	0	10	40	70	1
	1	20	30	50	2
	2	30	32	38	3
	3	35	25	42	4
	4	45	12	32	5
0	5	50	28	34	1
	6	20X	20	35	2
	7	40X	10	20	3
	8	30XM	14	30	4
	9	40XH	35	40	5

Примечание: состояние поверхности: 1 – полирование, 2 – шлифование, 3 – тонкое точение, 4 – грубое точение, 5 – наличие окалины.

3. Рассчитать запас прочности по нормальным напряжениям с учетом усталости в опасных сечениях, считая концентраторами на-

пряжений уступ с галтелью и шпоночный паз, необходимый для закрепления на валу шкивов с помощью шпонок. Цикл нормальных напряжений симметричный.

- 4. Проделать такой же расчет для определения запасов прочности по касательным напряжениям. Цикл касательных напряжений считать пульсирующим.
- 5. Рассчитать полный запас прочности с учетом усталости материала.
- 6. При получении коэффициента запаса усталостной прочности меньше допустимой величины [n] = 1,8 предложить конкретные меры повышения усталостной прочности: а) конструктивные приемы, связанные с изменением формы опасных участков вала; б) меры технологического упрочнения.

2 ПРИМЕР РАСЧЕТА ВАЛОВ НА ПРОЧНОСТЬ

Часть I Расчет на прочность вала при изгибе с кручением

Для ведущего вала прямозубой цилиндрической передачи редуктора с двумя зубчатыми колесами (рисунок 2, a) с диаметрами d_1 , d_2 , передающего мощность P = 15 кВт при угловой скорости $\omega = 30$ рад/с, определить диаметр вала по двум вариантам:

- а) используя третью гипотезу прочности;
- б) используя четвертую гипотезу прочности.

Принять: нормативный коэффициент запаса прочности [n] = 2; сталь Cт35; поверхность вала шлифованная; окружная и радиальная силы, действующие на каждое из зубчатых колес, равны между собой:

$$F_{r1} = F_1$$
; $F_{r2} = F_2$.

1. Составляем расчетную схему вала, приводя действующие на вал нагрузки к оси (рисунок 2, δ). При равномерном вращении вала $M_1=M_2$, где M_1 и M_2 – скручивающие моменты, которые добавляются при переносе сил F_1 и F_2 на ось вала.

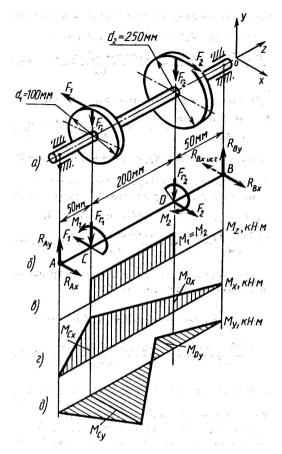


Рисунок 2 — Графическое представление результатов расчета вала на изгиб с кручением: a — схема нагружения вала; δ — расчетная схема; ϵ — эпюра крутящих моментов; ϵ — эпюра изгибающих моментов в вертикальной плоскости; δ — эпюра изгибающих моментов в горизонтальной плоскости

2. Определяем скручивающий момент, действующий на вал:

$$M_1 = M_2 = P/\omega = 0.5 \cdot 10^3 \,\mathrm{H \cdot M} = 0.5 \,\mathrm{kH \cdot M}.$$

3. Вычисляем нагрузки, приложенные к валу:

$$F_1 = 2M_1/d_1 = 2 \cdot 0,5 \cdot 10^3/0,1 = 10^4 \text{ H} = 10 \text{ kH}; F_{r1} = 0,4 \cdot 10 = 4 \text{ kH};$$

 $F_2 = 2M_2/d_2 = 2 \cdot 0,5 \cdot 10^3/0,25 = 4 \cdot 10^3 \text{ H} = 4 \text{ kH}; F_{r2} = 0,4 \cdot 4 = 1,6 \text{ kH}.$

4. Определяем реакции опор в вертикальной плоскости (см. рисунок $2, \delta$):

$$\Sigma M_A = F_{r1} \cdot AC + F_{r2} \cdot AD - R_{By} \cdot AB = 0;$$

$$R_{By} = (F_{r1} \cdot AC + F_{r2} \cdot AD)/AB = (4 \cdot 0,05 + 1,6 \cdot 0,25)/0,3 = 2 \text{ kH};$$

$$\Sigma M_B = R_{Ay} \cdot AB - F_{r1} \cdot BC - F_{r2} \cdot DB = 0;$$

$$R_{Ay} = (F_{r1} \cdot BC + F_{r2} \cdot DB)/AB = (4 \cdot 0,25 + 1,6 \cdot 0,05)/0,3 = 3,6 \text{ kH};$$

$$\Sigma Y = R_{Ay} - F_{r1} - F_{r2} + R_{By} = 3,6 - 4 - 1,6 + 2 = 0.$$

Сумма проекций всех сил на ось Y равна нулю ($\Sigma Y = 0$), следовательно, R_{Av} и R_{Bv} найдены правильно.

Определяем реакции опор в горизонтальной плоскости (см. рисунок $2, \delta$):

$$\Sigma M_A = F_1 \cdot AC - F_2 \cdot AD - R_{Bx} \cdot AB = 0;$$

$$R_{Bx} = (F_1 \cdot AC - F_2 \cdot AD)/AB = (10 \cdot 0.05 - 4 \cdot 0.25)/0.3 = -1.66 \text{ kH}.$$

Знак «минус» указывает на то, что истинное направление реакции противоположно выбранному (см. рисунок $2, \delta$). Далее:

$$\begin{split} \Sigma M_B &= R_{Ax} \cdot AB - F_1 \cdot CB + F_2 \cdot DB = 0; \\ R_{Ax} &= (F_1 \cdot CB - F_2 \cdot DB) / AB = (10 \cdot 0.25 - 4 \cdot 0.05) / 0.3 = 7.66 \text{ kH}; \\ \Sigma X &= R_{Ax} - F_1 + F_2 - R_{Bx} = 7.66 - 10 + 4 - 1.66 = 0. \end{split}$$

Уравнение равновесия выполняется тождественно ($\Sigma X = 0$), следовательно, R_{Ax} и R_{Bx} найдены верно.

- 5. Строим эпюру крутящих моментов M_z (рисунок 2, e).
- 6. Определяем в характерных сечениях значения изгибающих моментов M_x в вертикальной плоскости и M_y в горизонтальной плоскости и строим эпюры (рисунок 2, ε , δ):

$$M_{Cx} = R_{Ay} \cdot AC = 3,6 \cdot 0,05 = 0,18 \text{ кH·м};$$
 $M_{Dx} = R_{Ay} \cdot AD - F_{r1} \cdot CD = 3,6 \cdot 0,25 - 4 \cdot 0,2 = 0,1 \text{ кH·м};$
 $M_{Cy} = R_{Ax} \cdot AC = 7,66 \cdot 0,05 = 0,383 \text{ кH·м};$
 $M_{Dy} = R_{Ax} \cdot AD - F_{1} \cdot CD = 7,66 \cdot 0,25 - 10 \cdot 0,2 = -0,085 \text{ кH·м}.$

7. Вычисляем наибольшее значение эквивалентного момента по заданным гипотезам прочности. В данном примере значение суммарного изгибающего момента в сечении C больше, чем в сечении D:

$$M_{\text{H}C} = \sqrt{M_{Cx}^2 + M_{Cy}^2} = \sqrt{0.18^2 + 0.383^2} = 0.423 \text{ kH·m};$$

 $M_{\text{H}D} = \sqrt{M_{Dx}^2 + M_{Dy}^2} = \sqrt{0.1^2 + 0.085^2} = 0.13 \text{ kH·m}.$

Поэтому сечение C и является опасным. Определяем эквивалентный момент в сечении C:

вариант *a*:

$$M_{\text{эквIII}} = \sqrt{M_x^2 + M_y^2 + M_z^2} = \sqrt{0.18^2 + 0.383^2 + 0.5^2} =$$

= $\sqrt{0.429} = 0.655 \text{ kH·m};$

− вариант б:

$$M_{_{9\text{KBIV}}} = \sqrt{M_x^2 + M_y^2 + 0.75M_z^2} =$$

= $\sqrt{0.18^2 + 0.383^2 + 0.75 \cdot 0.5^2} = \sqrt{0.366} = 0.605 \text{ kH} \cdot \text{m}.$

8. Вычисляем допускаемое нормальное напряжение:

$$[\sigma] = \sigma_x / [n] = 320/2 = 160 \text{ M}\Pi a.$$

где $\sigma_{_{\rm T}}$ – предел текучести (таблица A.1).

9. Определяем требуемые диаметры вала:

– по варианту а:

$$d = \sqrt[3]{\frac{M_{\text{DKBIII}}}{0,1[\sigma]}} = \sqrt[3]{\frac{0,655 \cdot 10^6}{0,1 \cdot 160}} = 34,5 \text{ MM};$$

- по варианту δ :

$$d = \sqrt[3]{\frac{M_{\text{9KBIV}}}{0,1[\sigma]}} = \sqrt[3]{\frac{0,605 \cdot 10^6}{0,1 \cdot 160}} = 33,6 \text{ MM}.$$

Принимаем $d_{\text{вала}} = 36$ мм.

Часть II Расчет вала на сопротивление многоцикловой усталости

1. Определяем требуемые размеры вала на участках AC, CD и DB (участки обозначим цифрами I, II, III соответственно). Допускаемые напряжения при действии знакопеременных нагрузок значительно ниже, чем в случае статической нагрузки (примерно в 1,9 раза). Для CT35 примем допускаемое напряжение при растяжении [σ] = 95 МПа [4, с. 261]. Рассчитаем диаметры вала на соответствующих участках:

– участок
$$AC$$
: $d^1 = \sqrt[3]{\frac{M_{\text{иC}}}{0,1[\sigma]}} = \sqrt[3]{\frac{0,423 \cdot 10^6}{0,1 \cdot 95}} = 35,44 \text{ мм.}$

Принимаем стандартное значение d = 36 мм;

– участок *CD*:
$$d^{II} = \sqrt[3]{\frac{M_{\text{эквIII}}}{0,1[\sigma]}} = \sqrt[3]{\frac{0,655 \cdot 10^6}{0,1 \cdot 95}} = 41,01 \text{ мм.}$$

Принимаем стандартное значение d = 42 мм;

– участок
$$DB$$
: $d^{\text{III}} = \sqrt[3]{\frac{M_{\text{иD}}}{0,1[\sigma]}} = \sqrt[3]{\frac{0,13 \cdot 10^6}{0,1 \cdot 95}} = 23,91 \text{ мм.}$

Принимаем стандартное значение d = 24 мм.

2. Определяем геометрические характеристики опасных сечений вала:

$$W_{\text{H}}^{1} = \frac{\pi d^{3}}{32} = \frac{3,14 \cdot (0,036)^{3}}{32} = 4,58 \cdot 10^{-6} \text{ m}^{3};$$

$$W_{\text{H}}^{II} = \frac{\pi d^{3}}{32} = \frac{3,14 \cdot (0,042)^{3}}{32} = 7,27 \cdot 10^{-6} \text{ m}^{3};$$

$$W_{\text{H}}^{III} = \frac{\pi d^{3}}{32} = \frac{3,14 \cdot (0,024)^{3}}{32} = 1,36 \cdot 10^{-6} \text{ m}^{3},$$

где $W_{\mathfrak{u}}^{\mathfrak{l}}$, $W_{\mathfrak{u}}^{\mathfrak{ll}}$, $W_{\mathfrak{u}}^{\mathfrak{ll}}$ – моменты сопротивления при изгибе на соответствующих участках;

$$W_{\kappa}^{\text{II}} = \frac{\pi d^3}{16} = \frac{3,14 \cdot (0,042)^3}{16} = 14,54 \cdot 10^{-6} \,\text{M}^3,$$

где W_{κ}^{II} – момент сопротивления при кручении.

С учетом ослабления пазами для двух стандартных шпонок (таблицы А.3 и А.4) получим:

$$W_{\text{H}}^{\text{II}} = 0.8 \cdot 7.27 \cdot 10^{-6} = 5.816 \cdot 10^{-6} \text{ m}^3;$$

 $W_{\text{H}}^{\text{II}} = 0.9 \cdot 14.54 \cdot 10^{-6} \text{ m}^3 = 13.09 \text{ cm}^3.$

3. Вычисляем номинальные напряжения:

$$\begin{split} & \sigma_{\max}^{\mathrm{I}} = M_{_{\mathrm{H}C}} \, / \, W_{_{\mathrm{H}}}^{\mathrm{I}} = 0,423 \cdot 10^{3} / \left(4,58 \cdot 10^{-6}\right) = 94,00 \cdot 10^{6} \,\, \Pi \mathrm{a} = 94,00 \,\, \mathrm{M}\Pi \mathrm{a}; \\ & \sigma_{\max}^{\mathrm{II}} = M_{_{\mathrm{H}C}} \, / \, W_{_{\mathrm{H}}}^{\mathrm{II}} = 0,423 \cdot 10^{3} / \left(7,27 \cdot 10^{-6}\right) = 58,18 \cdot 10^{6} \,\, \Pi \mathrm{a} = 58,18 \,\,\, \mathrm{M}\Pi \mathrm{a}; \\ & \sigma_{\max}^{\mathrm{III}} = M_{_{\mathrm{H}D}} \, / \, W_{_{\mathrm{H}}}^{\mathrm{III}} = 0,13 \cdot 10^{3} / \left(1,36 \cdot 10^{-6}\right) = 95,58 \cdot 10^{6} \,\,\, \Pi \mathrm{a} = 95,58 \,\,\, \mathrm{M}\Pi \mathrm{a}; \\ & \tau_{\max}^{\mathrm{II}} = M_{_{Z}} \, / \, W_{_{\mathrm{K}}}^{\mathrm{II}} = 0,5 \cdot 10^{3} / \left(13,09 \cdot 10^{-6}\right) = 38,20 \cdot 10^{6} \,\,\, \Pi \mathrm{a} = 38,20 \,\,\, \mathrm{M}\Pi \mathrm{a}. \end{split}$$

Здесь σ_{max} , τ_{max} — максимальные нормальные и касательные напряжения соответственно.

Вычисляем амплитуды и средние напряжения цикла на участках:

I.
$$\sigma_a = \sigma_{\text{max}}^{\text{I}} = 94 \,\text{M}\Pi a; \ \sigma_m = 0;$$

II.
$$\sigma_a = \sigma_{\max}^{II} = 58,18 \text{ M}\Pi \text{a}; \ \sigma_m = 0;$$

$$\tau_m = \tau_a = \tau_{\text{max}}^{\text{II}} / 2 = 19,10 \text{ M}\Pi a;$$

III.
$$\sigma_a = \sigma_{\text{max}}^{\text{III}} = 95,58 \text{ M}\Pi \text{a}; \ \sigma_m = 0.$$

4. Определяем радиусы галтелей:

$$\rho^{1} = (d^{11} - d^{1})/2 = (42 - 36)/2 = 3 \text{ mm};$$

$$\rho^2 = (d^{II} - d^{III}) / 2 = (42 - 24) / 2 = 9 \text{ mm}.$$

5. Определяем коэффициенты концентрации напряжений.

При $\frac{\rho^1}{d^1} = \frac{3}{36} = 0,083$ и $d^{II}/d^1 = 2$ по графику на рисунке 3 имеем коэффициент концентрации напряжений при стандартном соотношении D/d $(K_{\sigma})_0 = 1,6$.

При $\rho^2/d^{\text{III}} = 9/24 = 0,375$ и $d^{\text{II}}/d^{\text{III}} = 2$ по графику на рисунке 3 имеем $(K_{\sigma})_0 = 1,3$.

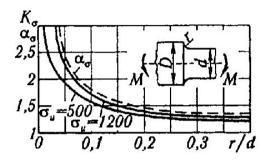


Рисунок 3 — Эффективные коэффициенты концентрации напряжений при изгибе для ступенчатых валов с отношением D/d=2, с переходом по круговой галтели радиуса r

Учитывая, что в нашем случае $D/d = d^{II}/d^{I} = 1,17$ и $d^{II}/d^{III} = 1,75$, используя график на рисунке 4, находим поправочные коэффициенты: $\xi = 0,8$ (для изгиба, участок I) и $\xi = 1$ (для изгиба, участок III).

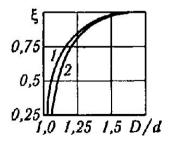


Рисунок 4 — Поправочный коэффициент ξ при изгибе (кривая I) и при кручении (кривая 2)

Находим эффективные коэффициенты концентрации напряжений по формулам:

$$K_{\sigma} = 1 + \xi \left[\left(K_{\sigma} \right)_{0} - 1 \right],$$

$$K_{\tau} = 1 + \xi \left[\left(K_{\tau} \right)_{0} - 1 \right],$$

где $\left(K_{\sigma}\right)_0$ и $\left(K_{\tau}\right)_0$ — эффективные коэффициенты концентрации напряжений, соответствующие отношению D/d=2.

Получаем:

I.
$$K_{\sigma} = 1 + 0.8 (1.6 - 1) = 1.48$$
.

II.
$$K_{\tau} = 1,4 \ K_{\sigma} = 1,5$$
 (таблица А.3).

III.
$$K_{\sigma} = 1 + 1(1,3-1) = 1,3$$
.

- 6. Определяем коэффициенты влияния абсолютных размеров для вала по рисунку 5 (кривая 2):
 - для $d^{\bar{I}} = 36$ мм $K_d = 0.86$;
- для $d^{\rm II}=42$ мм $K_d=0.78$, приближенно принимаем $K_{d\tau}=K_d=0.78$:
 - для $d^{\text{III}} = 24$ мм $K_d = 0.90$.

Поверхность вала шлифованная, поэтому $K_F = 0.92$ (рисунок A.2).

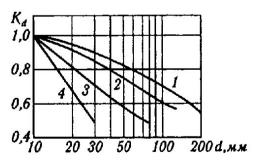


Рисунок 5 — Коэффициенты влияния абсолютных размеров K_d : I — детали из углеродистой стали без концентратора; 2 — детали из легированной стали при отсутствии концентратора и из углеродистой стали при наличии концентратора; 3 — детали из легированной стали при наличии концентратора;

4 – для любой стали при весьма большой концентрации напряжений

- 7. Определяем коэффициент чувствительности материала к асимметрии цикла Ψ_{τ} по таблице A.2. Для ст35 $\sigma_{\text{\tiny B}}$ = 540 МПа, тогда Ψ_{τ} = 0,04.
 - 8. Вычисляем коэффициенты запаса прочности:
 - по пределу выносливости по формулам:

$$n_{\sigma} = \frac{\sigma_{-1}}{K_{\sigma}\sigma_a/(K_dK_F) + \Psi_{\sigma}\sigma_m};$$

$$n_{\tau} = \frac{\tau_{-1}}{K_{\sigma}\tau_a/(K_{d\sigma}K_F) + \Psi_{\sigma}\tau_m}.$$

Получим:

I.

$$n_{\sigma} = \frac{260}{1,48.94,00/(0,86.0,92)+0} = 1,48;$$

II.

$$n_{\sigma} = \frac{260}{1,5.58,18/(0,78.0,92)+0} = 2,14;$$

$$n_{\tau} = \frac{150}{1,4.19,10/(0,78.0,92)+0,04.19,10} = 3,94.$$

При сложном напряженном состоянии используем формулу Гафа – Полларда для вычисления коэффициента запаса прочности:

$$n = \frac{n_{\sigma}n_{\tau}}{\sqrt{n_{\sigma}^2 + n_{\tau}^2}} = \frac{2,14\cdot3,94}{\sqrt{2,14^2 + 3,94^2}} = 1,88;$$

III.

$$n_{\sigma} = \frac{260}{1,3.95,58/(0,90.0,92)+0} = 1,73;$$

- по пределу текучести по формулам:

$$n_{\sigma} = \sigma_{\rm T}/\sigma_{\rm max};$$

 $n_{\tau} = \tau_{\rm T}/\tau_{\rm max}.$

Получим: I. $n_{\sigma} = 320 / 94,00 = 3,40;$ II. $n_{\sigma} = 320 / 58,18 = 5,5; \quad n_{\tau} = 190 / 66,05 = 2,88;$ $n_{\tau} = 320 / 58,18 = 5,5; \quad n_{\tau} = 190 / 66,05 = 2,88;$

$$n = \frac{n_{\sigma}n_{\tau}}{\sqrt{n_{\sigma}^2 + n_{\tau}^2}} = \frac{5.5 \cdot 2.88}{\sqrt{5.5^2 + 2.88^2}} = 2.55;$$

III.
$$n_{\sigma} = 320 / 95,58 = 3,35.$$

Выволы

Проведены проектировочные расчеты двух валов в условиях статического и циклического нагружения. При расчете вала постоянного диаметра в условиях статических нагрузок коэффициент запаса прочности превышает нормативный: фактический коэффициент n = 2,9, а допускаемый [n] = 2.

Фактические запасы усталостной прочности меньше нормативного на всех участках, поэтому необходимо принять меры по увеличению запасов усталостной прочности или ограничить срок использования вала.

3 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется сложным сопротивлением?
- 2. Что такое гипотеза прочности?
- 3. Какие напряженные состояния называют равноопасными?
- 4. Что такое эквивалентное напряжение?
- 5. Какой вид нагружения стержня реализуется в практической части Вашей курсовой работы?
- 6. Какое напряженное состояние испытывает стержень в практической части Вашей работы (одноосное напряженное состояние, плоское напряженное состояние или объемное напряженное состояние)?
- 7. Какие внутренние силовые факторы возникают в поперечных сечениях стержня (расчетная часть)?

- 8. Как записывается условие прочности при изгибе с кручением круглого стержня?
 - 9. Что называется усталостью и выносливостью материала?
 - 10. Что такое цикл напряжений?
 - 11. Перечислите основные параметры цикла.
- 12. Запишите основные характеристики симметричного и пульсационного цикла.
 - 13. Какие циклы считаются подобными?
 - 14. Что такое база испытаний?
 - 15. Что представляет собой кривая усталости?
 - 16. Что называется пределом выносливости материала?
- 17. Может ли предел выносливости быть равным пределу текучести, пределу прочности?
 - 18. Какие факторы влияют на величину предела выносливости?
- 19. Как определяется запас усталостной прочности детали при простых видах деформации?
- 20. По какой формуле определяется запас усталостной прочности при сложном напряженном состоянии?
- 21. Как определяется предел выносливости детали при симметричном цикле?
- 22. Как определяется предел выносливости детали при асимметричном цикле?

4 ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ И СПОСОБАМ ПРЕДСТАВЛЕНИЯ РЕЗУЛЬТАТОВ

Результаты должны быть оформлены в виде отчета о курсовой работе в соответствии с требованиями ГОСТ 7.32–2017 «Система стандартов по информации, библиотечному и издательскому делу. Отчет о научно-исследовательской работе. Структура и правила оформления» [9, 10].

Страницы не обводят в рамках, поля не отделяют чертой. Размеры полей не менее: левого -30 мм, правого -10 мм, верхнего -20 мм и нижнего -20 мм. Нумерация страниц отчета сквозная: от титульного листа до последнего листа приложений. Номер страницы на титульном

листе не проставляют. Номер страницы ставят в центре нижней части листа, точку после номера не ставят. Страницы, занятые таблицами и иллюстрациями, включают в сквозную нумерацию.

Объем отчета должен быть не менее 15 страниц (без учета приложений) машинописного текста (шрифт 14пт, Times New Roman, через 1 интервал). Отчет должен быть отпечатан на листах формата А4 и подшит в папку. Описания должны быть сжатыми. Объем приложений не регламентируется.

Титульный лист является первым листом отчета, входит в общее количество страниц. Титульный лист отчета оформляется по установленной единой форме, приводимой в приложении Б. За титульным листом в отчете о курсовой работе помещаются: содержание, введение, основная часть, заключение, список использованных источников, приложения. Основная часть включает в себя 2–3 главы и разбивку на параграфы, содержащие как теоретические сведения, так и расчет своего варианта задания.

Разделы отчета нумеруют арабскими цифрами без точки в пределах всего отчета. Наименования разделов должны быть краткими и отражать содержание раздела. Переносы слов в заголовке не допускаются.

Цифровой материал необходимо оформлять в виде таблиц. Каждая таблица должна иметь номер и тематическое название. Таблицу следует помещать после первого упоминания о ней в тексте.

Рисунки также должны иметь номер и название.

Схемы и графики вычерчиваются в строго выбранных масштабах. Эпюры внутренних усилий приводятся непосредственно под стержнями на одном листе, указываются все характерные ординаты. Используются современные программные комплексы КОМПАС, ЛОГОС.

Приложения оформляют как продолжение отчета. В приложении помещают материалы, не вошедшие в основной текст отчета.

ЗАКЛЮЧЕНИЕ

Данные рекомендации предназначены для формирования у студентов умений использования базовых знаний естественно-научных дисциплин в области сопротивления материалов, формирова-

ния навыков применения в профессиональной деятельности методов математического анализа и моделирования, теоретического и экспериментального исследования, а также формирования способностей проводить расчеты на прочность, жесткость и устойчивость типовых элементов конструкций.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов. 3-е изд., испр. М.: Высшая школа, 2003. 560 с.
- 2. Анурьев В.И. Справочник конструктора-машиностроителя: в 3 т. 8-е изд. М.: Машиностроение, 1999.
- 3. Сопротивление материалов: учеб. пособие / А.А. Балакирев [и др.]. Пермь: Изд-во Перм. гос. техн. ун-та, 2007. 338 с.
- 4. Гафаров Р.Х., Жернаков В.С. Что нужно знать о сопротивлении материалов: учеб. пособие. М.: Машиностроение, 2001. 276 с.
- 5. Жученков А.П., Зинштейн М.Л., Ханов А.М. Сопротивление материалов: учеб. пособие для вузов. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2014. 215 с.
- 6. Писаренко Г.С. Справочник по сопротивлению материалов. Киев: Дельта, 2008. 813 с.
- 7. Степин П.А. Сопротивление материалов: учебник. СПб.: Лань, $2010.-320~\mathrm{c}.$
- 8. Феодосьев В.И. Сопротивление материалов: учебник для втузов. М.: Изд-во МГТУ им. Баумана, 2010. 591 с.
- 9. ГОСТ 7.32–2017. Отчет о научно-исследовательской работе. Структура и правила оформления. М.: Стандартинформ, 2017. 27 с.
- 10. ГОСТ Р 7.0.100–2018. Библиографическая запись. Библиографическое описание. Общие требования и правила составления. М.: Стандартинформ, 2018. 124 с.

ПРИЛОЖЕНИЕ А

Справочные материалы

Таблица А.1 – Механические характеристики углеродистых конструкционных сталей

Механические		Марка стали								
характеристики, МПа	10	20	30	35	45	50	20M	40M	30XM	40XM
$\sigma_{\scriptscriptstyle B}$	340	420	500	540	610	640	800	1000	950	1000
$\sigma_{\scriptscriptstyle T}$	210	250	300	320	360	380	650	800	750	800
$ au_{\scriptscriptstyle \mathrm{T}}$	140	160	170	190	220	230	320	350	340	390
σ ₋₁	190	200	230	260	290	310	380	380	360	400
τ ₋₁	100	110	120	150	170	180	200	200	230	240

Таблица A.2-3начения коэффициентов Ψ_σ и Ψ_τ для стали

Предел прочности	ı	Ψ_{τ}	
$\sigma_{\scriptscriptstyle B}, M\Pi a$	при изгибе	при растяжении	при кручении
350	0,05	0,07	0,03
450	0,07	0,08	0,03
550	0,08	0,09	0,04
650	0,10	0,11	0,04
750	0,12	0,14	0,05
850	0,15	0,16	0,06
1000	0,17	0,19	0,07

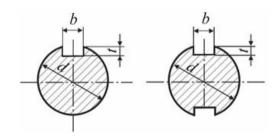


Рисунок А.1 – Сечение валов со шпоночными канавками

Таблица А.3 – Эффективные коэффициенты концентрации напряжения при изгибе и кручении для валов и осей со шпоночными канавками

σ,,	ν	V	Моменты соп	ротивления сечений нетто			
σ _в , ΜΠа	K_{σ}	$K_{ au}$	при одной канавке	при двух канавках			
500	1,50	1,40	13	13			
600	1,60	1,50	$W_n \approx 0.9 \frac{\pi d^3}{2.2}$	$W_n \approx 0.8 \frac{\pi d^3}{32}$			
700	1,72	1,60	. 32	" 32			
800	1,80	1,70	18	13			
900	1,90	1,80	$W_{\kappa} \approx 0.95 \frac{\pi d^3}{16}$	$W_{\kappa} \approx 0.9 \frac{\pi d^3}{16}$			
1000	2,00	1,90	. 16	16			

 Π римечание: номинальные значения нормальных и касательных напряжений следует вычислять по сечениям нетто.

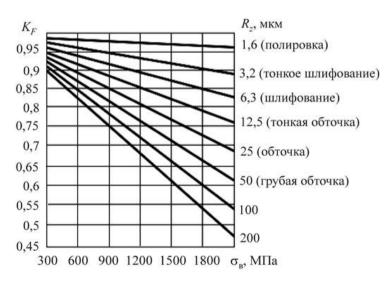


Рисунок А.2 – Коэффициенты качества поверхности K_F

Таблица А.4 — Моменты сопротивления $W_{\rm u}$, $W_{\rm k}$ и площади A сечений валов, ослабленных пазом для одной стандартной шпонки

d, mm	$b \times t$, mm	$W_{\rm u}$, cm ³	W_{κ} , cm ³	A, cm ²	<i>d</i> , мм	$b \times t$, mm	$W_{\rm u}$, cm ³	W_{κ} , cm ³	A, cm ²
20		0,655	1,440	2,96	50		10,65	22,9	18,84
21		0,770	1,680	3,28	52	16×10	12,10	25,9	20,4
22	6×6	0,897	1,940	3,62	55		14,51	30,8	23,0
23		1,038	2,23	3,98	58		16,81	36,0	25,4
24		1,192	2,55	4,34	60	18×11	18,76	40,0	27,3
25		1,275	2,81	4,62	62	16^11	20,9	44,3	29,2
26	8×7	1,453	3,18	5,03	65		24,3	51,2	32,2
28	8^/	1,855	4,01	5,88	68		27,5	58,4	35,1
30		2,32	4,97	6,79	70		30,2	63,8	37,3
32		2,73	5,94	7,64	72	20×12	33,0	69,7	39,5
34	10~0	3,33	7,19	8,68	75		37,6	79,0	43,0
35	10×8	3,66	7,87	9,22	78		42,6	89,2	46,6
36		4,01	8,59	9,78	80		44,7	95,0	48,6
37		4,27	9,24	10,27	82		48,4	102,5	51,5
38	12 × 0	4,66	10,04	10,86	85	24×14	54,3	114,6	55,1
40	12×8	5,51	11,79	12,08	88		60,6	127,5	59,1
42		6,45	13,72	13,37	90		65,1	136,7	61,9
44		7,25	15,61	14,58	92		67,9	144,3	64,2
45		7,80	16,74	15,27	95		75,3	159,4	68,6
46	14×9	8,38	17,93	15,99	98	28×16	83,1	175,5	73,2
47		8,98	19,17	16,72	100		88,7	186,9	76,3
48		9,62	20,5	17,47	105		103,7	217,0	84,8

Примечание: моменты сопротивления и площади вычислены для нетто-сечений, для которых определяются величины коэффициентов концентрации напряжений; b и t – размеры сечения шпонки (рисунок A.1).

ПРИЛОЖЕНИЕ Б

Образец титульного листа

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

Аэрокосмический факультет Кафедра «Механика композиционных материалов и конструкций» Направление: 22.03.01 – Материаловедение и технологии материалов

КУРСОВАЯ РАБОТА

по дисциплине «Сопротивление материалов»

Тема: «Расчет на прочность вала при изгибе с кручением»

		Выполнил студент гр
		(Фамилия, имя, отчество)
		(подпись)
Проверил доцент каф. МІ	КМК, канд. физма	ат. наук Е.Ю. Макарова
	(должность,	Б.И.О.)
(оценка)		(подпись)
-	(дата)	

Пермь 20

Учебное излание

Макарова Елена Юрьевна

РАСЧЕТ НА ПРОЧНОСТЬ ВАПА ПРИ ИЗГИБЕ С КРУЧЕНИЕМ

Методические указания к выполнению курсовой работы

Подписано в печать 01.09.2025. Формат $60 \times 90/16$. Усл. печ. л. 1,75. Тираж 19 экз. Заказ № 130.

Издательство Пермского национального исследовательского политехнического университета. Адрес: 614990, г. Пермь, Комсомольский пр., 29, к. 113. Тел.: (342) 219-80-33

Отпечатано в типографии Издательства Пермского национального исследовательского политехнического университета. Адрес: 614990, г. Пермь, Комсомольский пр., 29, к. 113.

Тел.: (342) 219-80-33