

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Пермский национальный исследовательский политехнический университет

Аэрокосмический факультет Кафедра «Ракетно-космическая техника и энергетические системы»

УТВЕРЖДАЮ

Проректор по учебной работе

д-р техн наук, проф. — Н. В. Лобов

20 /4r.

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ «ГИДРАВЛИКА И НЕФТЕГАЗОВАЯ ГИДРОМЕХАНИКА»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Основная образовательная программа подготовки бакалавров Направление 131000.62 «Нефтегазовое дело»

Профиль подготовки бакалавра	«Бурение нефтяных и газовых скважин» «Эксплуатация и обслуживание объектов добычи нефти»
	«Сооружение и ремонт объектов систем трубопроводного транспорта»
	(номер и наименование профиля маг. программы/специализации)
Квалификация (степень) выпускника:	: бакалавр
	(бакалавр / магистр / специалист)
Специальное звание выпускника:	бакалавр-инженер (бакалавр-инженер магистр-инженер/инженер)
Выпускающая кафедра:	Нефтегазовые технологии
	(наименование кафедры)
Форма обучения:	Очная
Курс: 2. Семестр(-ы) Трудоёмкость:	: 3
Кредитов по рабочему учебному пл	лану: 4 ЗЕ
Часов по рабочему учебному плану	•
Виды контроля:	
Экзамен: - 3 Зачёт: -	Курсовой проект: - Курсовая работа: -

Учебно-методический комплекс дисциплины «Гидравлика и нефтегазовая механика» разработан на основании:

- федерального государственного образовательного стандарта высшего профессионального образования, утверждённого приказом Министерства образования и науки Российской Федерации «24» декабря 2009 г. номер приказа «827» по направлению подготовки (специальности) 131000.62 «Нефтегазовое дело»;
- компетентностной модели выпускника ООП по направлению подготовки 1310со. 62 профилю, утверждённой \mathscr{A}^{\prime} » $\mathscr{O}\mathscr{E}$ 20 /3 г.;
- базового/рабочего учебного плана очной формы обучения (набора 20___ года), утверждённого *ЗЯ О* 2012 г.

Рабочая программа согласована с рабочими программами дисциплин математика, физика, геология, литология, участвующих в формировании компетенций совместно с данной дисциплиной. Разработчик д-р техн, наук, проф. (учёная степень, звание) (инициалы, фамилия) (учёная степень, звание) (подпись) (инициалы, фамилия) Рецензент Е.М. Набока д-р техн. наук, проф. (учёная степень, звание) (подпись) (инициалы, фамилия) Рабочая программа рассмотрена и одобрена на заседании кафедры «Ракетнокосмическая техника и энергетические системы» (РКТиЭС) «*Од*» *1д* 20/4 г., протокол № 4 Заведующий кафедрой ракетно-космической техники и энергетических систем д-р техн. наук, проф. (подпись) (учёная степень, звание) (инициалы, фамилия) Рабочая программа одобрена учебно-методической комиссией Аэрокосмического факультета « 29 » 10 20 14 г., протокол № 20 . Председатель учебно-методической комиссии Аэрокосмического факультета доцент В.П. Матюнин (инициалы, фамилия) (учёная степень, звание) СОГЛАСОВАНО Заведующий кафедрой Нефтегазовые техно-

логии

д-р техн. наук, проф.

(ученая степень, звание)

Начальник управления образовательных программ, канд. техн. наук, доц.

Д.С. Репецкий

АННОТАЦИЯ ДИСЦИПЛИНЫ

1.1 Цель учебной дисциплины — формирование комплекса знаний об основных законах гидравлики и нефтегазовой гидромеханики и их приложениях в области технологий, средств, способов и методов строительства нефтяных и газовых скважин на суше и море, оборудования и агрегатов нефтегазового производства.

1.2 Задачи учебной дисциплины:

- ознакомление студентов с основами механики жидкости, газа и многофазных сред, основными законами движения вязких жидкостей и газов;
- формирование умения для решения производственно-технологических, научно-исследовательских, проектных и эксплуатационных задач отрасли;
- формирование навыков для оценки параметров течения в технологических процессах нефтегазового производства;
- получение навыков оптимального и рационального использования современных технологий подготовки транспорта и хранения транспортной продукции;
- *применение* полученных знаний, навыков и умений в профессиональной деятельности.

1.3 Предметом освоения дисциплины являются следующие объекты:

- виды, модели и физические свойства жидкости;
- силы, действующие в жидкости, гидростатическое давление и его свойства;
- основные уравнения и законы гидростатики (дифференциальные уравнения равновесия жидкости, гидростатический закон распределения давления, основное уравнение гидростатики, абсолютный и относительный покой жидкости, сила давления жидкости на стенки сосудов);
- основы кинематики жидкости (виды движения, струйная модель движущейся жидкости, одномерные потоки жидкости, понятия живого сечения, расхода, средней скорости, уравнение неразрывности для потока жидкости);

- основы гидродинамики (дифференциальные уравнения движения идеальной жидкости, интеграл Бернулли, понятие напора, виды напоров, уравнение Бернулли для потока вязкой жидкости и газов, область применимости и приложения уравнения Бернулли, закон изменения импульса и момента импульса объема жидкости);
- режимы движения жидкости в трубах (ламинарный и турбулентный, критическое значение числа Рейнольдса);
- гидравлические сопротивления (виды гидравлических сопротивлений, формулы для определения потерь напора на гидравлических сопротивлениях);
- установившееся движение жидкости по трубопроводам (характеристика трубопровода, соединение простых трубопроводов, гидравлический расчет трубопроводов);
- неустановившееся движение жидкости по трубопроводам (уравнение Бернулли для неустановившегося движения, явление гидроудара, формула Н.Е. Жуковского);
- истечение жидкости через отверстия и насадки, силовое воздействие потока на преграду;
- моделирование гидромеханических процессов (физическое моделирование, основные положения теории подобия, критерии подобия, математическое (численное) моделирование, программные продукты для решения задач гидравлики);
- приборы для измерения гидравлических параметров.

1.4 Место учебной дисциплины в структуре профессиональной подготовки выпускников.

Дисциплина «Гидравлика и нефтегазовая механика» относится к базовой части профессионального цикла дисциплин и является обязательной при освоении ОПП по направлению 131000 «Нефтегазовое дело», профилю бакалавриата 131000.62.01 «Бурение нефтяных и газовых скважин», 131000.62.02 «Эксплуатация и добыча нефти», 131000.62.04 «Сооружение и ремонт объектов систем трубопроводного транспорта».

В результате изучения дисциплины обучающийся должен демонстрировать следующие результаты:

Знать

- основные физические свойства жидкостей и газов;
- общие законы и уравнения гидростатики (гидростатический закон распределения давления, основное уравнение гидростатики, уравнение поверхностей равного давления);
- методику описания относительного покоя жидкости;
- элементы струйной модели движущейся жидкости;

- элементы потока жидкости;
- общие уравнения энергии в дифференциальной и интегральной формах (интеграл Бернулли для линии тока, уравнение Бернулли для потока вязкой жидкости);
- область применимости уравнения Бернулли;
- виды напоров и их энергетический и геометрический смыслы;
- режимы движения жидкости в трубах;
- природу гидравлических сопротивлений;
- основные сведения о движении жидкости по трубопроводам, истечении через отверстия и насадки;
- основные сведения о силовом воздействии потока на преграды;
- устройство и принцип действия приборов для измерения гидравлических величин (плотности, вязкости, давления, расхода и скорости);
- основные сведения о моделировании потоков жидкостей и теории полобия.

Уметь

- применять основное уравнение гидростатики и уравнение Бернулли для решения практических задач;
- определять режимы движения жидкости в трубопроводах и выбирать коэффициенты сопротивлений;
- определять коэффициенты истечения жидкости через насадки;
- строить эпюры давления жидкости на стенки сосудов;
- использовать приборы для измерения гидравлических величин;
- определять гидравлическое содержание гидромеханических процессов в системах и оборудовании нефтегазовой отрасли.

Владеть

- методикой расчета сил давления на стенки сосудов;
- методикой применения уравнения Бернулли;
- методикой расчета трубопроводов для жидкости и газа;
- основными современными методами постановки и решения задач гидравлики.

1.5 Содержание дисциплины

- *Тема 1*. Общие сведения о жидкости
- Тема 2. Основные понятия и законы гидростатики
- Тема 3. Основные уравнения равновесия жидкостей и газов
- *Тема 4*. Кинематика жидкости

Тема 5. Динамика жидкости

- *Тема 6*. Гидравлические сопротивления
- Тема 7. Гидравлический расчет трубопроводов
 - Тема 8. Специальные трубопроводы
- Тема 9. Неустановившееся движение жидкости в трубопроводе
- Тема 10. Истечение жидкости через отверстия и насадки
- Тема 11. Физическое моделирование движения жидкости
- Тема 12. Математическое (численное) моделирование движения жидко-
- Тема 13. Приборы для измерения гидравлических величин