Лекция 3 НЕЛИНЕЙНО-ОПТИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ

Вопросы:

- 1. Феноменологическая теория генерации второй гармоники.
- 2. Фазовый (волновой) синхронизм.
- 3. Параметрическая генерация света.

Необходимым условием наблюдения нелинейных эффектов в оптике является наличие нелинейных восприимчивостей среды, не равных нулю хотя бы в одном из порядков.

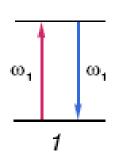
$$E(x,t) = A \cdot \cos(\omega t - kx)$$
 — внешнее световое поле (плоская монохроматическая волна).

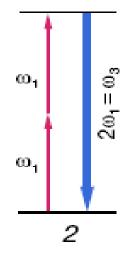
$$P_{\text{Hелин}} = \varepsilon_0 \cdot (\chi^{(2)} E^2 + \chi^{(3)} E^3 + ...) =$$

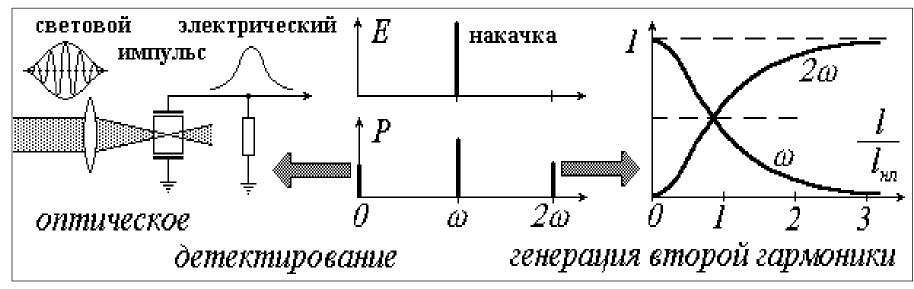
$$= \varepsilon_0 \cdot \frac{1}{2} \chi^{(2)} A^2 (1 + \cos 2(\omega t - kx)) +$$

$$+\varepsilon_0 \cdot \frac{1}{4} \chi^{(3)} A^3 (3\cos(\omega t - kx) + \cos 3(\omega t - kx)) + \dots$$

Физический смысл слагаемых в уравнении для нелинейной поляризованности:

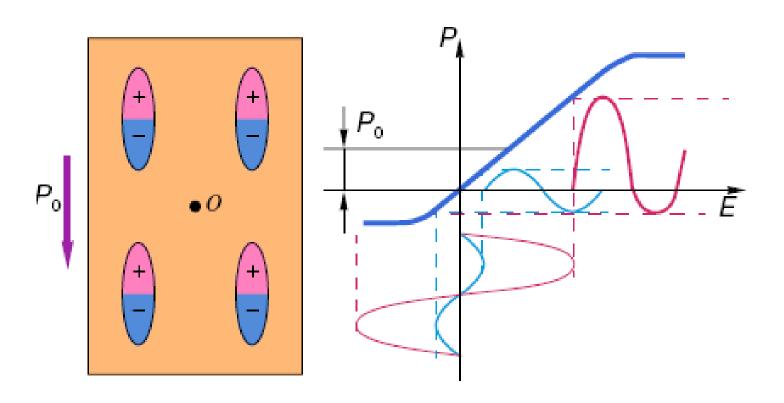

$$\frac{1}{2} \mathcal{E}_0 \chi^{(2)} A^2$$
 — генерация статического электрического поля (эффект выпрямления, или детектирования).


$$\frac{1}{2} \varepsilon_0 \chi^{(2)} A^2 \cos 2(\omega t - k x)$$
 — генерация световой волны удвоенной частоты (второй гармоники).

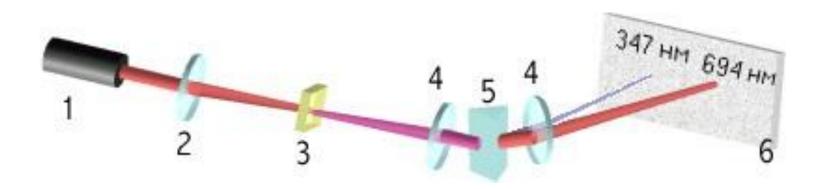

$$\frac{1}{4} \varepsilon_0 \chi^{(3)} A^3 \cos 3(\omega t - k x)$$
 — генерация световой волны утроенной частоты (третьей гармоники).

Таким образом, наличие нелинейных восприимчивостей приводит к новому эффекту — генерации высших гармоник.

Преобразование частоты в квадратично-нелинейной среде



$$l_{H\Pi}=rac{arepsilon_0 \lambda n}{arphi^{(2)}E}$$
 — нелинейная длина.


Схема строения нецентросимметричного кристалла, позволяющего наблюдать генерацию второй гармоники

Квадратично-нелинейная среда обладает способностью к обогащению спектра частот световых волн.

Опыт П.Франкена (США, 1961 г.)

Исторически первым опытом по нелинейному преобразованию оптических частот, выполненным сразу после открытия лазеров, был опыт по генерации второй гармоники.

- 1 рубиновый лазер, 2 фокусирующая линза,
 - 3 кварцевая пластинка,
 - 4 коллиматорные линзы,
 - 5 призма, 6 фотопластинка (экран).

Цвета показаны условно.

Наведение в среде квадратичной поляризации является необходимым, но не достаточным условием наблюдения генерации второй гармоники.

Особенности физических процессов в нелинейной среде при переизлучении на частоте второй гармоники

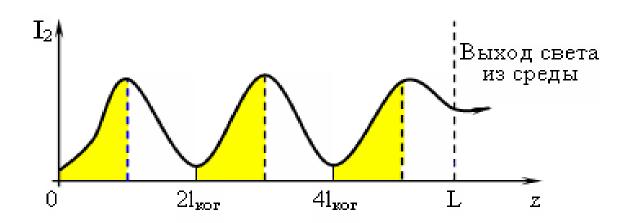
- 1. Поскольку в оптическом диапазоне $\lambda << L \ (L-линейный размер среды), то в нелинейном кристалле совершается множество локальных актов переизлучения на частоте второй гармоники, что обусловлено большим числом атомов.$
- 2. Вторичные световые волны, возникшие при переизлучении атомов среды, являются когерентными. Поэтому пространственное накопление нелинейного эффекта (генерации второй гармоники) возможно только в результате интерференции, определяющей интенсивность волны второй гармоники.

Волновая расстройка

$$\upsilon(\omega) = \frac{c}{n(\omega)} = \frac{\omega}{k}$$
 — скорость основной волны.

$$\upsilon(2\omega) = \frac{c}{n(2\omega)} = \frac{2\omega}{K}$$
 — скорость волны второй гармоники.

Вследствие дисперсии показателя преломления имеем:


$$n(\omega) \neq n(2\omega) \implies \upsilon(\omega) \neq \upsilon(2\omega) \implies K \neq 2k$$

 $k,\ K$ — модули волновых векторов для основной и переизлученной волн.

$$\Delta k = K - 2k$$
 – волновая расстройка.

Энергообмен между падающей и переизлученной волнами при генерации второй гармоники

$$\frac{I_2}{I_1} = \frac{I(2\omega)}{I(\omega)} = const \cdot \frac{\sin^2\left(\frac{1}{2}\Delta k \cdot z\right)}{\left(\frac{1}{2}\Delta k\right)^2}$$

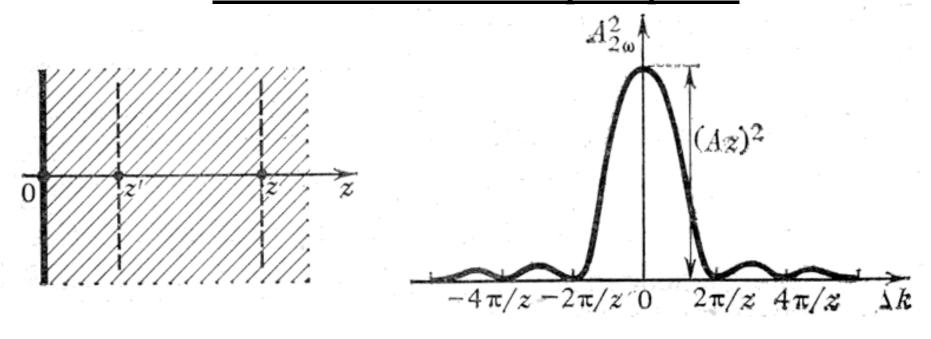
$$l_{\text{KO}\Gamma} = \frac{\lambda}{4} \cdot \frac{1}{(n(2\omega) - n(\omega))}$$
 — длина когерентности.

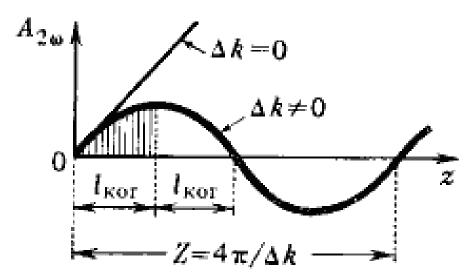
Условие фазового (волнового) синхронизма

Для эффективного преобразования излучения исходной волны во вторую гармонику (устранения обратной перекачки энергии) необходимо иметь большую длину когерентности:

$$l_{\text{\tiny KOL}} \to \infty.$$
 (1)

При этом фаза волны второй гармоники, излученной в любой точке нелинейной среды, будет величиной постоянной.


Эквивалентное (1) условие обращения в ноль волновой расстройки: $\Delta k = 0$

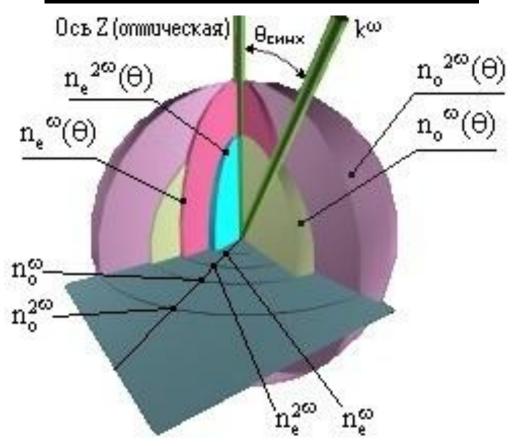

называется условием фазового (волнового) синхронизма.

При
$$\Delta k = 0$$
 имеем: $\frac{I(2\omega)}{I(\omega)} = const \cdot z^2$,

т.е. имеет место пространственное накопление нелинейного эффекта (генерации второй гармоники).

Зависимость интенсивности волны второй гармоники от величины волновой расстройки

Достаточным условием наблюдения генерации второй гармоники является выполнение условия волнового (фазового) синхронизма.


Это условие имеет интерференционную природу: оно соответствует наибольшему усилению световых колебаний в волне второй гармоники за счет интерференции волн, переизлученных в различных точках нелинейной среды.

$$\Delta k << \min(\mathbf{K}, 2\mathbf{k})$$
 – приближенное условие фазового синхронизма.

Для выполнения точного или приближенного условия фазового синхронизма необходимо иметь:

$$n(2\omega) = n(\omega)$$
 или $n(2\omega) \approx n(\omega)$

Обеспечение условий синхронизма с использованием анизотропных кристаллов, обладающих естественным двойным лучепреломлением

Изоповерхности показателей преломления для обыкновенного и необыкновенного лучей в отрицательном одноосном кристалле. Если волны частот ω и 2ω принадлежат одному типу (обыкновенные или необыкновенные), то иметь одинаковые показатели преломления невозможно:

$$n_o(2\omega) \neq n_o(\omega); \quad n_e(2\omega) \neq n_e(\omega)$$

Однако для разных типов волн условие синхронизма может быть выполнено:

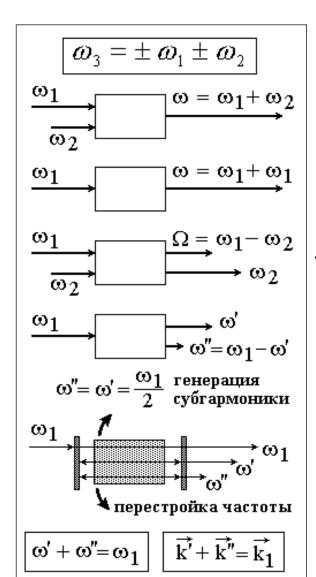
$$\frac{1}{n_e^2(\theta)} = \frac{\cos^2 \theta}{n_o^2} + \frac{\sin^2 \theta}{n_e^2}$$

В случае отрицательного одноосного кристалла $n_e(\omega) < n_o(\omega)$ и угол θ синх, удовлетворяющий условию $n_e^{2\omega}(\theta_{\text{синх}}) = n_o^{\omega}$, равен:

$$\theta_{\text{CMHX}} = \arcsin \sqrt{\frac{(n_o(\omega))^{-2} - (n_o(2\omega))^{-2}}{(n_e(2\omega))^{-2} - (n_o(2\omega))^{-2}}}$$

<u>Пример</u>. Генерация второй гармоники в кристалле **KDP** (дигидрофосфат калия **KH2PO**4).

Исходное излучение — рубиновый лазер ($\lambda = 694,3$ нм).


Значения показателей преломления:

$$n_e(\omega) = 1,466, \ n_e(2\omega) = 1,487, \ n_o(\omega) = 1,506,$$

 $n_o(2\omega) = 1,534.$

Угол синхронизма равен $\theta_{\text{синх}} = 50,4^{\circ}$.

Если основная волна распространяется под углом hetaсинх к оси кристалла и имеет поляризацию, отвечающую обыкновенному лучу, то волна удвоенной частоты, возбуждаясь в том же направлении, будет обладать поляризацией необыкновенного луча.

Виды оптического преобразования частоты в среде с квадратичной нелинейностью

- генерация волны на суммарной частоте. $(K = k_{_1} + k_{_2})$
- генерация второй гармоники.

$$(K=2k_1)$$

- генерация волны на разностной частоте. $(K = k_{_{\! 1}} k_{_{\! 2}})$
- параметрическая генерация света.

$$\omega_{_{1}}$$
 – волна накачки

$$\omega'$$
 – сигнальная волна.

$$\omega''$$
 – холостая волна.

Параметрическая генерация света (предложена в 1962 г. С.А.Ахмановым и Р.В.Хохловым)

Параметрическая генерация света— это нелинейно-оптическое преобразование мощной световой волны накачки в когерентные световые волны меньших частот, значения которых могут перестраиваться.

При выполнении условия волнового (фазового) синхронизма сигнальная и холостая волны при распространении усиливаются за счет передачи энергии от волны накачки.

Схема параметрического генератора света

Какие пары частот будут генерироваться на выходе из ПТС?

Те частоты, которые:

во-первых, удовлетворяют закону сохранения энергии

$$\omega_1 = \omega' + \omega'',$$

во-вторых, удовлетворяют закону сохранению импульса (условию фазового синхронизма)

$$\vec{k}_1 = \vec{k}' + \vec{k}''.$$

Особенности конструкции параметрического генератора света

- 1. Нелинейный кристалл помещается внутри резонатора, образованного двумя параллельными зеркалами 31, 32 для усиления сигнальной и холостой волн без увеличения размеров нелинейного кристалла.
- 2. Параметрическая генерация имеет место, если усиление сигнальной и холостой волн превосходит потери за один

проход в резонаторе, т.е. добротность резонатора должна быть большой.

3. При повороте кристалла или его нагреве условие фазового синхронизма выполняется для другой пары частот, таким образом, производится плавная перестройка частоты.

Ахманов С.А. (1929 – 1991)