УМК Специальные волоконные световоды

Тема 6. ФОТОИНДУЦИРОВАННЫЕ ВОЛОКОННЫЕ БРЭГГОВСКИЕ РЕШЕТКИ И ИХ ТЕХНОЛОГИИ

Волоконные брэгговские решетки ПП

Схематическое изображение волоконной решетки ПП в сердцевине

волокна: 1 – сердцевина, 2 - оболочка

где L — длина решетки, k- коэффициент связи решетки, равный $k = \Delta n_{MR} \times h/\lambda_{fp}$.

∆n_{мд} – амплитуда синусоидальной модуляции ПП, h = часть мощности основной моды, которая распространяется по сердцевине световода.

$$\Delta I_{\text{fp}} = 2I_{\text{fp}} \times \alpha \times [(n_{\text{fp}} \times \Delta n_{\text{MQI}} / 2 n_{\text{supp}})^2 + (\Lambda/L)^2]^{1/2}$$

где α - параметр порядка единицы для глубоких решеток (с коэффициентом отражения R~1) и порядка 0,5 для решеток небольшой глубины.

Спектр пропускания однородной длиннопериодной решетки длиной 25 мм и с периодом 230 мкм (Δn = 0,01; λc = 1,0 мкм).

Схемы записи брэгговских решеток в интерферометрах с амплитудным (а) и пространственным (б) разделением пучка УФ-излучения: 1 — делительная пластина, 2 — цилиндрическая линза, 3 — зеркала, 4- световод.

Схема записи брэгговских решеток с помощью фазовой маски: а) прямая запись, б) запись в интерферометре Тальбота; 1- фазовая маска, 2- оптическое волокно.

. Схема записи длиннопериодной решетки УФ-излучением: a) с помощью амплитудной маски, б) пошаговым методом: 1 — цилиндрическая линза, амплитудная маска, 3 — сферическая линза, 4 - световод

Волоконно-оптические лазеры.

Простейшая конфигурация волоконно-оптического лазера: 1 – полупроводниковый излучатель, 2 – точка сварки, 3, - активное волокно, 4 – брэгговские решетки, 5 – выход излучения

Модельный профиль ПП (а) и принцип преобразования многомодового излучения накачки в одномодовое излучение волоконного лазера в АкОВ с двойной оболочкой: 1- внутренняя оболочка, 2 — активная сердцевина, 3 — внешняя оболочка, 4 — многомодовая накачка, 5 — одномодовая генерация. Влияние геометрии внутренней оболочки на эффективность поглощения излучения накачки в АкОВ, легированном ионами Yb.

Геометрия оболочки	Поглощение на λ=978 нм, дБ/км
Круглая D-образная Прямоугольная Квадратная	$\begin{array}{c} 0,3\pm 0,05\\ 2,2\pm 0,05\\ 3,5\pm 0,05\\ 3,3\pm 0,05\end{array}$

Схема АкОВ с микроструктурированной оболочкой; черные кружки – капилляры, заполненные воздухом: 1 - активированная сердцевина, 2 – внутренняя оболочка, 3 – микроструктурированная оболочка, 4 – технологическая кварцевая оболочка

Характеристики иттербиевого волоконного лазера с накачкой в оболочку: а) спектр люминесценции (...) и генерации (-), б) зависимости выходной мощности от мощности накачки (λ_{нани} =980 нм) для различных длин волн генерации.

Волоконно-оптические усилители

Схема оптического усилителя: 1 — ввод излучения, 2 - оптический изолятор, 3 - АкОВ, легированное эрбием, 4 — сварное соединение, 5 — соединитель, 6 — лазер накачки, 7 — выход излучения

Характеристики эрбиевых усилителей

Наименование характеристики	Типичное значение
Коэффициент линейного усиления, дБ	3040
Мощность насыщения, Вт	0,5
Спектральная полоса усиления, нм	3040
Рабочая длина волны, мкм	1,531,57
Эффективность оптического преобразования, %	5060

Зависимость коэффициента усиления EDFA от длины волны

ВКР волоконно-оптические лазеры.

Схема энергетических уровней, иллюстрирующая основные принципы ВКР. Энергия возбуждающего света hv0, линии КР имеют частоты v0±vi.

Относительные рамановские спектры для стекол SiO_2 , GeO_2 , B_2O_3 , P_2O_5

Схема ВКР-лазера с брэгговскими решетками (ВБР), записанными непосредственно в OB с фосфоросиликатной сердцевиной (точками отмечены места сварки): 1 – лазерная матрица с излучением на λ =0,806 мкм, 2 – АкOB, сердцевина которого легирована неодимом, 3 – OB с фосфоросиликатной сердцевиной, 4 – выход излучения на λ =1,234 мкм, 5 – резонатор ВКР-лазера, ВБР – волоконная брэгговская решетка с коэффициентом отражения R (например, 99 %) на λ =1,06 мкм

Спектр излучения двухкаскадного ВКР-лазера на основе фосфоросиликатного оптического волокна

Типичные радиационные допуска на различные типы волоконно-оптических компонентов

Параметр	Обычное коммерческое	Радиационно- стойкое
Поглощенная доза (рад)	10³-10 ⁴	10 ⁵ -10 ⁶
Мощность облучения (рад/с)	10⁶-10⁸	10 ⁹ -10 ¹⁰
Число ошибок при передаче информации (ошибки/бит-день)	10⁻³-10 -7	10 ⁻⁸ -10 ⁻¹⁰