Top.Mail.Ru
РусРусский язык
Как кислород помогает бороться с глобальным потеплением и почему для этого нужны водоросли и бактерии — рассказывают ученые Пермского Политеха

Как кислород помогает бороться с глобальным потеплением и почему для этого нужны водоросли и бактерии — рассказывают ученые Пермского Политеха

Кислород — самый важный элемент нашей планеты. Его широко применяют в промышленности, науке и медицине, но самое главное — кислород формирует условия для жизни на Земле. Ученые Пермского Политеха рассказали, что производит больше кислорода — леса или океан и почему избыток кислорода приводит к похолоданию.

Кислород как фактор формирования климата

— С момента формирования Земли и в течение первых 2 млрд лет ее существования в атмосфере Земли практически отсутствовал кислород. Так как это химически активный газ, он сразу вступал в реакцию, образуя оксиды, — воду и горные породы. Высокое содержание кислорода в современной атмосфере обусловлено фотосинтезом с выделением кислорода (а бывает фотосинтез и без выделение кислорода) и снижением вулканической активности. Благодаря этому  уменьшилось поступление в атмосферу и на поверхность Земли веществ, на окисление которых расходовался кислород, полученный фотосинтезом, — рассказывает Вадим Шарифулин, кандидат физико-математических наук, доцент кафедры прикладной физики Пермского Политеха.

До распространения кислорода в воздухе биосфера была преимущественно анаэробной, то есть представлена организмами без кислородного дыхания, при этом аэробные (нуждающиеся в кислороде) организмы обитали лишь в изолированных кислородных карманах. Когда кислород стал накапливаться в атмосфере, аэробные организмы стали обитать повсеместно, в то время как анаэробные перебрались жить в бескислородные карманы. В итоге это привело к появлению сложных  многоклеточных форм жизни. Появление кислорода в атмосфере сформировало озоновый слой, уменьшив поступление ультрафиолетового излучения на поверхность Земли, сделав сушу более обитаемой. Интересно, что фотосинтезирующие бактерии, распространившиеся вместе с кислородом, извлекали из атмосферы углекислый газ, что привело к снижению парникового эффекта, глобальному оледенению и массовому вымиранию. 

Что производит больше кислорода — лес или океан?

Об этом рассказала Мария Комбарова, ведущий инженер, ученый секретарь кафедры охраны окружающей среды Пермского Политеха.

Леса не только вырабатывают кислород, но и поглощают его. Например, тропический дождевой лес обладает огромной и плотной зеленой биомассой, вырабатывающей большое количество кислорода. При этом своеобразный микроклимат, который создают дождевые леса, способствует активному разложению органики — опавших листьев, отмерших растений. Бактерии актиномицеты, грибы и насекомые, которые питаются этой органикой, потребляют кислород примерно в том же объеме, что и вырабатывается тропическим лесом.

Совсем другой пример — лиственные дубравы и хвойные леса средней полосы России. Они также выделяют кислород, однако в силу климата разложение органической подстилки (которой относительно немного) происходит не столь быстро. Соответственно, кислорода на разложение отмерших листьев и растений требуется меньше. Чем больше пластина листа, его фотосинтезирующая площадь, тем больше кислорода дерево выделяет. Так, тополь вырабатывает столько же кислорода, сколько 10 берез. В хвойном лесу процесс фотосинтеза продолжается больший период времени, поэтому он почти круглогодичен. Для сравнения: с гектара хвойного леса за год можно получить 11 тонн кислорода, а дубрава даст 18 тонн.

— Функция лесов состоит еще в том, что они улавливают парящую в атмосфере пыль и сажу: один гектар лиственного леса за лето «захватывает» 56 тонн загрязнений. Деревья их поглощают и отправляют дальше в круговорот веществ. Поэтому важно решать проблемы загрязнения воздушного бассейна. Выбросы крупных промышленных городов и автотранспорта, стирание дорожного полотна оказывают увеличенную нагрузку на лесопарковые зоны, способствуют ослабеванию растений, что приводит к развитию у них заболеваний, — отмечает Мария Комбарова.

Кроме кислорода, деревья выделяют фитонциды — биологически активные вещества, которые защищают нас от бактериальных и вирусных инфекций. Березовый лес за сутки вырабатывает 3 кг фитонцидов, хвойный бор — 5 кг, а можжевеловый лес — 30 кг.

Воды мирового океана населяет фитопланктон, подводные «сады» нитчатых, бурых, желто-зеленых и прочих водорослей. Фитонциды они не выделяют, однако не менее важны для кислородного баланса в атмосфере. По научным данным, водорослями вырабатывается 50-60% всего кислорода нашей планеты. Фитопланктон населяет океаны, моря, пресноводные водоемы. Кроме выработки кислорода, он также отвечает за очищение воды от тяжелых металлов, соединений промышленных сбросов.

— Водоросли являются также основной кормовой базой для мальков почти всех видов рыб. Погибает фитопланктон — умирает и огромная масса рыбы. При загрязнении воды меняется и видовой состав водорослей. Нарушается процесс их жизнедеятельности, например, самыми уязвимыми являются диатомовые водоросли и желто-зеленые водоросли, в случае гибели которых меняется минеральный состав воды. На отмерших водорослях начинают обильно размножаться бактерии, которые потребляют для жизни кислород. Таким образом нарушается и кислородный баланс. Следом за этим чуткие к кислороду микроорганизмы, очищающие воду (фильтраторы, седиментаторы) погибают.  После их гибели процесс самоочищения водоема нарушается или вовсе прекращается. Водоемы в подобных случаях могут даже прекратить свое существование — столь значительным бывает заиливание. Тогда вода становится непригодной для питья, рыбоводства и сельскохозяйственных нужд. Купание в таких водоемах может привести к проблемам для здоровья: инфекционным дерматозам, аллергическим высыпаниям, — объясняет ведущий инженер Пермского Политеха Мария Комбарова.

К сокращению популяции водорослей приводит и глобальное потепление. Меняется температура воды, вследствие чего происходит изменение видового состава водорослей, а также их численности: объем то сокращается, то увеличивается. При этом дисбалансе страдает и рыба: то от бескормицы, то от продуктов цветения воды. Другой важный фактор — плавающие в океане огромные острова мусора. Морская вода является агрессивной средой, которая разъедает отходы. Из них в воду поступают органика и другие вещества, обычно негативно изменяющие численность и разнообразие водорослей и бактерий.

Порой бывает, что в условиях неразвитой или устаревшей водоотводящей системы, сточные воды с жилых домов и предприятий попадают в водоемы. Выбросы содержат, например, азот, который выделяется из органических отходов, и фосфор как один из компонентов моющих средств. Это является прекрасной питательной средой для бактерий и водорослей, которые под воздействием этих загрязнений массово развиваются в нетипичном видовом составе. Все это также приводит к деградации и гибели водоемов. Для проверки сточных вод на производствах используют метод биоиндикации. На очистных сооружениях изучают состояние активного ила — сообщества бактерий и микроорганизмов, участвующих в очистке воды. Анализ показывает, например, в каком состоянии находятся фильтрующие микроорганизмы: активны ли они, нормально ли питаются и размножаются. Чтобы восстановить нужные микробные ассоциации, ил насыщают кислородом и питательными веществами. Биоиндикация применяется на предприятиях, где образуются и очищаются сточные воды. Еще один метод оценки качества воды — биотестирование. В испытуемую воду помещаются, например, микроскопические рачки или водоросли. Выявляются нежелательные изменения, определяется возможность получения у этих микроорганизмов здорового потомства.

— Я считаю, что эти методы должны применяться параллельно. Биоиндикация — в процессе очистки, а биотестирование — на очищенных сточных водах, — заключает Мария Комбарова.

Таким образом, если на Земле исчезнут леса, кислород продолжит поступать в атмосферу в больших объемах. Однако деревья очищают воздух от пыли и сажи, а также вырабатывают фитонциды, которые подавляют развитие болезнетворных бактерий. Это делает леса незаменимыми для человека.

Кислород на службе у человека

Доля кислорода в земной коре достигает 47%. Он входит в состав почти всех горных пород в качестве компонента оксида. Например, песок и гранит — это оксид кремния, железная руда — оксид железа. Минерал апатит используется для производства фосфорных удобрений, керамики и стекла, а из доломита делают, например, декоративную плитку как для облицовки зданий, так и для внутренней отделки.

Вадим Шарифулин отмечает, что среди газов кислород обладает самыми сильными магнитными свойствами — намагничивается он примерно в 50 раз лучше, чем гелий и водород. Чем ниже температура кислорода, тем сильнее его магнитные свойства. Например, без специальных приспособлений можно увидеть, как к сильному магниту притягивается жидкий кислород (температура его при этом ниже –183°C). Выдающиеся магнитные свойства позволяют определять концентрацию кислорода в смесях газов с помощью газоанализаторов, которые применяются в научных исследованиях, медицине, различных производствах, предприятиях добычи нефти, газа, горных пород.

Ассистент кафедры химических технологий Пермского Политеха Вячеслав Пунькаев рассказывает, что в промышленности кислород получают сжижением воздуха в холодильных машинах. Азот испаряют, а полученный чистый кислород применяют во многих отраслях промышленности: для модернизации и повышения эффективности металлургических процессов, при сварке и резке металлов, при производстве серной и азотной кислот, для реактивных двигателей.  В чистом кислороде горение протекает интенсивнее, чем на воздухе. Многие вещества, которые на воздухе не горят вовсе из-за азота, могут воспламениться и расплавиться в кислороде, например, железо и сталь. Это упрощает технологию обработки материалов.

— Интересно, что обычная хлопчатобумажная одежда не воспламеняется от случайного разряда статического электричества, но это происходит в атмосфере с чистым кислородом и достаточно высоким давлением. Все дело в молекулярной природе газа. Газ — это отдельные молекулы, чем выше концентрация молекул, тем выше вероятность их столкновения и того, что они вступят в химическую реакцию. Например, есть такой способ предотвращения пожаров: в помещении повышают концентрацию азота до 85%, тем самым снижая концентрацию кислорода до 15%. В таких условиях здоровый человек может дышать по-прежнему без вреда для здоровья, но та же бумага практически не горит. То есть у горючих молекул бумаги больше вероятность встретиться с химически нейтральным азотом, чем с кислородом, — добавляет Вадим Шарифулин.

При этом избыток кислорода может привести к передозировке. Например, при дыхании чистым кислородом через 10-15 минут наступает онемение и дрожание губ, которое при более длительном воздействии переходят в судороги и потерю сознания. Долгое пребывание в состоянии кислородного отравления может привести к смерти. Однако само по себе это отравление — явление специфичное и в бытовых условиях случиться не может. Подвержены ему, например, водолазы и подводники.

Евгений Бурмистров, математик I-ой категории кафедры математического моделирования систем и процессов и преподаватель Политехнической школы ПНИПУ, рассказал, что за пределами земной атмосферы, на космических станциях, таких как МКС, космонавты оснащены кислородом благодаря системам жизнеобеспечения, а именно — генераторам кислорода. Они разлагают воду на водород и кислород электролизом. Кислород затем используется для дыхания экипажа. Откуда на МКС вода? Во-первых, ее поставляют с Земли грузовыми кораблями вместе с оборудованием и продовольствием. Во-вторых, вода на МКС рециркулируется и повторно используется. Использованная вода проходит через системы очистки и фильтрации, чтобы быть снова доступной для потребления. В-третьих, влагосборное оборудование собирает конденсат из атмосферы МКС, направляет его в системы очистки и хранения.

— На Марсе проблема обеспечения кислородом более сложная из-за отсутствия готовой атмосферы, богатой кислородом. Планируемые миссии на Марс должны решить эту проблему. Один из способов — использование собственных систем жизнеобеспечения, подобных тем, что используются на космических станциях, но с более эффективными технологиями для получения кислорода из доступных ресурсов. Например, миссии на Марс могут включать в себя использование электролиза для извлечения кислорода из воды, которая может быть найдена на Марсе в виде льда или подземных ресурсов, — рассказывает Евгений Бурмистров.

Рассматриваются и другие методы: например, выращивание растений или использование химических процессов для извлечения кислорода из газовых компонентов атмосферы Марса.

Кислород необходим для производства и обработки многих материалов, окружающих нас ежедневно. Кислород обеспечивает условия для жизни на Земле, при этом выработка его нарушается из-за вредных выбросов в атмосферу и водоемы. Чтобы сохранить биологический баланс, необходимо особое внимание уделять очистным установкам, а также поддерживать здоровье лесов и фотосинтезирующих микроорганизмов, населяющих Мировой океан.


18.10.234373

Похожие Новости

Есть новость?
Предложи нам!

Предложить новость

politehperm