Ученые Пермского Политеха создали компьютерную модель, которая в 5 раз точнее рассчитывает надежность опорных частей мостов

26 сентября 2025 607
Фото: Bryan White, Unsplash

Безопасность более 42 000 российских мостов, особенно в сейсмически активных регионах, таких как Крым и Дальний Восток, критически зависит от опорных частей (подшипников) — «суставов» конструкции. Наиболее эффективны среди них сферические, в которых особую роль играет полимерный слой между стальными чашами, поскольку именно он гасит колебания. Однако уход иностранных производителей и несовершенство методов существующего проектирования, не способного точно прогнозировать поведение материалов при землетрясениях, сделали создание отечественных аналогов задачей национального масштаба. Для решения этой проблемы ученые Пермского Политеха создали высокоточную компьютерную модель опорной части моста, которая в 5 раз точнее существующих методов рассчитывает ее надежность.

Результаты исследования опубликованы в статье. Исследование проведено при поддержке Российского научного фонда грант № 25-29-00470.

В России более 42 000 мостов общей длиной свыше 20 000 километров. Надежность этих сложных инженерных сооружений критически важна, особенно с учетом необходимости выдерживать не только стандартные нагрузки, но и сейсмические воздействия (землетрясения), которых с каждым годом становится все больше.

Ключевую роль в обеспечении безопасности играют специальные опорные части, выполняющие функцию «суставов» моста. Эти устройства позволяют конструкции гибко реагировать на различные воздействия — от сезонных перепадов температуры до мощных подземных толчков. Наибольшей эффективностью отличаются сферические опорные части, где основная работа по гашению колебаний приходится на полимерный слой, расположенный между стальными чашами.

Однако уход с российского рынка мировых лидеров в производстве таких опор создал серьезную угрозу для строительства и эксплуатации мостов в сейсмически активных регионах, к которым относятся, например, Крым и Дальний Восток. Данное обстоятельство сделало разработку отечественных технологически совершенных аналогов задачей национального масштаба.

При этом существующие решения демонстрируют недостаточную эффективность. Стандартные опорные части, рассчитанные на 30-40 лет службы, зачастую не выдерживают реальных нагрузок в условиях землетрясений. Главная проблема заключается в том, что современные методы проектирования не позволяют точно прогнозировать поведение материалов при многократных мощных воздействиях, что приводит к преждевременному износу, дорогостоящим ремонтам и повышенным рискам для безопасности.

Ученые Пермского Политеха создали высокоточную компьютерную модель опорной части моста («цифровой двойник»), которая в 5 раз точнее существующих методов рассчитывает ее надежность. С помощью нее исследователи проанализировали, как на долговечность опор влияют два ключевых параметра: способ крепления полимерного слоя и его толщина.

Эксперты испытали три способа соединения пластиковой прокладки со стальными плитами опорной части инженерной конструкции. Первый — жесткое скрепление, когда детали становятся практически единым целым. Второй — сцепление с шероховатой поверхностью, обеспечивающее плотное прилегание с ограниченной подвижностью. Третий — скольжение по гладкой поверхности, позволяющее полимерному слою плавно сдвигаться для перераспределения нагрузок. Для каждого типа соединения определяли оптимальную толщину полимерного слоя скольжения от 4 до 12 мм.

— Результаты показали, что наиболее эффективным способом соединения является сцепление с шероховатой поверхностью. Именно этот вариант обеспечивает оптимальный баланс между прочностью и подвижностью конструкции. А оптимальная толщина полимерного слоя составила 4-8 мм. Более толстая прокладка деформируется под нагрузкой и снижает безремонтную работу опорной части моста, — рассказал Юрий Носов, научный сотрудник лаборатории цифрового инжиниринга машиностроительных процессов и производств Передовой инженерной школы Пермского Политеха, Руководитель гранта РНФ № 25-29-00470.

Особое внимание ученые уделили изучению полимерного слоя скольжения. В ходе экспериментов было обнаружено, что под постоянным давлением материал начинает медленно «течь». Это свойство, называемое ползучестью, со временем и разницей температуры меняет поведение опоры.

Для комплексного анализа всех этих факторов — от типа соединения до эффекта ползучести — исследователи разработали численный аналог опорной части мостового сооружения.

Чтобы оценить влияние ползучести, ученые создали в рамках этой модели две версии: простую, которая этот эффект игнорирует (традиционные методы), и сложную (вязкоупругую) — учитывающую ползучесть. Испытания в широком температурном диапазоне (от -40°C до +80°C) позволили подтвердить точность и усовершенствовать именно сложную модель, научив ее принимать во внимание влияние термосилового воздействия.

— Анализ данных показал, что традиционный метод расчетов, не учитывающий ползучесть, дает очень высокую погрешность — до 70%. На практике это означает, что при реальной просадке опоры на 0,1 мм старый метод может «предсказать» значение в 0,17 мм, что при пересчете на напряженно-деформированное состояние может привести к завышенным значениям прочности конструкции. Усовершенствованная модель оказалась в разы точнее: ее погрешность не превышает 13-20%. В том же сценарии она покажет результат 0,11-0,12 мм, что очень близко к действительности, — прокомментировала Анна Каменских, доцент кафедры вычислительной математики, механики и биомеханики ПНИПУ, кандидат технических наук.

Благодаря точному прогнозированию поведения материалов, новая модель открывает возможность рассчитывать работу опорной части моста, с большей эффективностью, которая превосходит традиционные решения в 5 раз.

Разработка пермских ученых вызывает интерес производственной компании ООО «АльфаТех». С ее помощью производитель может оптимизировать форму и технологию обработки опорных частей мостовых сооружений.


Похожие Новости

Copyright © 1998-2025
РЦИ ПНИПУ, ПРЕСС-СЛУЖБА ПНИПУ
+7 (342) 2-198-119, newschannel@pstu.ru
Приемная комиссия ПНИПУ +7 (342) 2-198-065, enter@pstu.ru