Для защиты металла турбинных лопаток авиационных двигателей от воздействия температур свыше 1100 °C применяют металлокерамические теплозащитные покрытия. Основной технологией их нанесения является атмосферное плазменное напыление, которое обеспечивает высокую производительность и относительную дешевизну процесса. Однако эта технология имеет и свои недостатки: наличие пористости и других дефектов, а также взаимодействие напыляемого материала с внешней средой. Все это снижает ресурс работы лопаток. Ученые Пермского Политеха и студенты Передовой инженерной школы изучили, как технологические факторы плазменного напыления влияют на итоговую структуру жаростойкого слоя и определили наиболее оптимальный режим нанесения данного типа покрытия.
Статья опубликована в журнале «Вестник ПНИПУ. Машиностроение, материаловедение», т. 27, № 1, 2025 год. Исследование выполнено в рамках реализации программы академического стратегического лидерства «Приоритет-2030».
В процессе работы газотурбинного двигателя всасываемый воздух сжимается в компрессоре и подается в камеру сгорания, где смешивается с топливом. При сгорании топливо-воздушной смеси происходит расширение газов и передача энергии газа лопатками турбины на диск или вал, в котором эти лопатки закреплены. За счет вращения диска турбины образуется тяга, благодаря которой двигатель поднимает самолет в воздух. Таким образом, лопатки турбины подвергаются температурным нагрузкам свыше 1100 °С. Именно поэтому на них необходимо наносить специальные теплозащитные покрытия. Они состоят из внешнего керамического слоя и металлического связующего жаростойкого подслоя.
Качество и долговечность жаростойкого покрытий во многом зависят от технологии их нанесения. Одним из наиболее распространенных методов является атмосферное плазменное напыление, когда частицы материала распыляются и ускоряются с помощью плазменной струи, которая создается дуговым прогревом смеси газов (например, аргона и водорода). Такой способ обеспечивает высокую производительность процесса при относительно низкой стоимости.
Тем не менее, он имеет свои недостатки: при напылении металлических жаростойких покрытий излишняя пористость и окисление материала снижают эффективность защиты лопаток от окисления и высокотемпературной коррозии. От качества получаемой структуры жаростойкого покрытия зависит и его общая долговечность.
Ученые Пермского Политеха изучили, как различные параметры напыления, такие как расход газов (аргона и водорода), сила тока дуги и расстояние напыления, влияют на итоговую структуру жаростойкого покрытия лопаток турбины.
Политехники провели эксперимент, в ходе которого металлический порошковый материал системы NiCoCrAlY наносили на образцы из жаропрочного сплава методом атмосферного плазменного напыления. Данный материал широко применяется для создания жаростойких слоев теплозащитных покрытий.
— Скорость и температура порошка при нанесении на лопатки играют критически важную роль в прочности покрытия, поскольку от них зависит сцепление частиц с металлом, пористость, степень окисления и так далее. В результате экспериментов мы обнаружили, что увеличение расхода аргона снижает температуру частиц, а повышение водорода и силы тока дуги наоборот ее поднимает. Это связано с тем, что аргон менее эффективно нагревает порошок, чем водород. В случае же со скоростью, чем больше расход аргона и сила тока дуги, тем больше скорость частиц. Все это положительно сказывается на качестве покрытия, — объясняет Андрей Сметкин, доцент кафедры механики композиционных материалов и конструкций ПНИПУ, кандидат технических наук.
— Мы определили наиболее оптимальный режим напыления жаростойкого покрытия. Температура металлических частиц в диапазон от 2410 до 2435 °С и скорость в районе 145 м/с обеспечивают равномерность покрытия с минимальными дефектами и высоким качеством сцепления с подложкой. Также было установлено, что расстояние в 100 мм является оптимальным для напыления: снижение дистанции до 80 мм ведет к излишнему перегреву материала основы, тогда как увеличение до 120 мм приводит к снижению толщины покрытия на 15-20%, — рассказывает Александр Малышев, студент магистратуры Передовой инженерной школы «Высшая школа авиационного двигателестроения» ПНИПУ.
Кроме того, полученные политехниками уравнения позволяют прогнозировать температуру и скорость частиц при различных параметрах напыления, что упрощает процесс настройки оборудования и снижает количество экспериментов, необходимых для достижения оптимальных результатов.
Результаты исследования ученых Пермского Политеха имеют важное практическое значение для авиационной промышленности. Оптимизация параметров напыления позволяет получить более качественные теплозащитные покрытия, которые будут лучше защищать турбинные лопатки от экстремальных температур и коррозии. Это, в свою очередь, увеличит срок службы лопаток и повысит надежность и безопасность авиационных двигателей.