При перекачивании топлива через двигатель самолета в жидкости образуются пузырьки (пустоты). Схлопываясь, они высвобождают большое количество энергии и могут вызвать поломку системы. Защитить двигатели от подобных проблем поможет числовая модель, разработанная учеными Пермского Политеха. Применение модели на отечественных авиастроительных предприятиях позволит конструировать более надежные двигатели без дополнительных затрат на натурные испытания. Исследование проведено в рамках программы стратегического академического лидерства «Приоритет 2030».
«Слабое звено» гидравлических систем — это насосы и двигатели. Именно в них чаще всего происходят поломки, из-за чего вся система перестает работать. Они должны обеспечивать заданные давление и производительность при минимальном весе и габаритах, максимальном коэффициенте полезного действия, минимальной трудоемкости изготовления, простоте обслуживания, надежности работы в эксплуатационных условиях, большом ресурсе. Наилучшим образом этим требованиям удовлетворяют шестеренные насосы. Они имеют бесспорные преимущества по сравнению с другими типами насосов по простоте, весовым характеристикам, дешевизне и надежности. Благодаря этому шестеренные насосы получили широкое применение в различных отраслях промышленности, например, в гидравлических системах управления самолетом.
— Шестеренный насос — гидромеханический агрегат. Чтобы он исправно функционировал, абсолютное давление на входе в рабочее колесо насоса должно превышать величину упругости насыщенных паров перекачиваемой жидкости. При несоблюдении этого условия образуется пар, производительность насоса падает, а через какое-то время он и вовсе начинает работать «вхолостую». Явления, которыми может сопровождаться парообразование от его начальной стадии и вплоть до прекращения работы насоса, имеют общее название кавитации. Кавитация приводит к быстрому разрушению агрегата вследствие гидравлических ударов и усиления коррозии, — рассказывает аспирант кафедры вычислительной математики, механики и биомеханики Пермского Политеха Руслан Билалов.
Чтобы избежать сбоев в работе двигателя, наиболее подверженные кавитации и истиранию детали покрывают защитными материалами. Для нанесения антикавитационного покрытия необходимо знать зоны распространения нежелательного воздействия. Их можно определить с помощью численного моделирования физико-механических процессов, происходящих в насосе при его эксплуатации, чему и посвящена статья ученых Пермского Политеха, опубликованная в журнале «Journal of Applied Mechanics and Technical Physics» (№ 63, 2022г).
— В рамках исследования проведено сравнение решения при однофазной и двухфазной моделях течения жидкости. Анализ результатов позволил сделать вывод, что с помощью однофазной модели можно прогнозировать места образования кавитации. Однако для исследуемого процесса такой прогноз не обладает необходимым уровнем достоверности. Численные эксперименты выявили, что однофазная модель не способна предсказать развитие кавитационного течения после раскрытия «запертого объема». Кроме того весьма затруднительно определить очаг и концентрацию кавитации, что очень важно для разработки методов борьбы с ней. Это говорит о целесообразности использования для исследуемого процесса именно двухфазной постановки, — поясняет ход исследования профессор кафедры вычислительной математики, механики и биомеханики, доктор технических наук Олег Сметанников.
Преимущество разработанной учеными Пермского Политеха численной модели состоит в том, что она позволяет учесть необходимые геометрические особенности насоса. К тому же, она дешевле аналогов в реализации, что позволяет проводить больше вычислительных экспериментов для достижения лучшего результата без серьезных отличий от реально протекающих процессов в шестеренном насосе.
Данная модель поможет улучшить качество системы топливопитания газотурбинных двигателей повышенной тяги, которые на данный момент разрабатываются АО «ОДК-СТАР».
Для справки:
Пермский Политех стал обладателем гранта «Приоритет 2030» в 2021 году. Его размер составил 100 млн рублей. «Приоритет 2030» является самой масштабной в истории России программой государственной поддержки и развития высших учебных заведений. Ее цель — формирование к 2030 году в России более 100 прогрессивных современных университетов, которые станут центрами научно-технологического и социально-экономического развития страны. Всего комиссия Минобрнауки РФ включила в программу «Приоритет 2030» 106 вузов из 49 городов страны, из них 60 % — региональные университеты.