Top.Mail.Ru
РусРусский язык
Алгоритм для управления отзывами о компаниях разработали в Пермском Политехе

Алгоритм для управления отзывами о компаниях разработали в Пермском Политехе

В современном мире репутация, успешность и устойчивость любой компании зависит от отзывов в интернете. Например, желая купить недвижимость, заинтересованные лица первым делом знакомятся с отзывами и упоминаниями о застройщике. Таким образом, актуальной для предприятий -застройщиков является задача мониторинга и управления своей репутацией в интернете. Маркетологи и копирайтеры вручную или через сторонние сервисы осуществляют поиск в сети информации о застройщике, определяют ее окрас, значимость, прогнозируют, какой эффект окажут эти упоминания на компанию, и принимают решения, каким образом на такие упоминания реагировать. Разработчики Пермского Политеха создали метод для программного обеспечения, который самостоятельно распределяет собранные отзывы о застройщике на положительные и отрицательные. Благодаря этому маркетологам удастся повысить уровень и качество исследований, значительно увеличить их скорость, своевременность и точность.

Исследование опубликовано в журанале «Прикладная математика и вопросы управления». Метод политехников для управления отзывами о компаниях был реализован в системе «Эйдос» и позволяет работать с небольшими базами данных, в отличие от методов на основе построения искусственных нейронных сетей, для которых необходимы большие выборки данных.

По словам ученых, в управлении репутационными рисками интерес представляют только положительные и отрицательные отзывы. Благодаря полярной противоположности исходной текстовой информации выявить типичные для каждой группы отзывы становится легче.

— Следует отметить, что негативные отзывы выявляются лучше, чем позитивные. Данный результат объяснится тем, что, как правило, отрицательные отзывы обладают большим объемом текстовой информации, чем положительные, и к тому же содержат больший эмоциональный окрас. Следовательно, у отрицательных отзывов более плотное семантическое ядро и совпадение слов в отзывах выше, чем у положительных, — сообщил аспирант кафедры «Вычислительная математика, механика и биомеханика» Антон Минин.

Так в качестве проверки адекватности метода дихотомической классификации нами были собраны 82 отзыва о известном пермском застройщике, оставленных клиентами на площадке «Яндекс.Карты» в период с 09.08.2018 по 13.06.2022. Каждый отзыв представляет собой текст, в котором клиент описывает достоинства компании, которые он смог для себя отметить, либо описывает негативный опыт и даже предостерегает других потенциальных клиентов от работы с данным предприятием. Программа представила короткий положительный текстовый отзыв и объёмный отзыв, который несет в себе негативную информацию. Комментарии, в которых содержатся как плюсы, так и минусы попадают в оба кластера.

— Очень важно, что полученный в нашей работе результат оценки деятельности застройщика коррелирует с результатом комплексной оценки уровня репутационного риска данного предприятия. Более того, использованный в настоящей работе метод позволяет уточнить оценку уровня репутационного риска застройщика, — рассказал доктор технических наук, доцент, профессор кафедры «Вычислительная математика, механика и биомеханика» Сергей Федосеев.

К существенным достоинствам данного метода для программного обеспечения относится возможность его использования при относительно небольших объемах собранной информации (несколько десятков отзывов). Алгоритм полезен специалистам по сбору и анализу данных о компаниях, а также поможет в управлении брендингом.


03.07.23682

Похожие Новости

Есть новость?
Предложи нам!

Предложить новость

politehperm