Микрожидкостные чипы с каналами размером порядка нескольких микрометров применяются в тех отраслях, где необходимо тщательно контролировать движение малых объемов жидкости. Сюда относится синтез ценных химических субстанций, доставка питательных веществ к клеточным культурам, транспортировка лекарственных препаратов по тонким капиллярам. Ученые Пермского Политеха выявили ранее неизвестный механизм, влияющий на течение жидкости в таких конструкциях. Это позволит увеличить точность моделирования и сделать такие чипы эффективнее.
Статья опубликована в журнале «Physics of Fluids» № 9 за 2024 год. Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (Проект № FSNM- 2023-0003).
Изучение процессов тепло- и массообмена на малых пространственных масштабах позволяет лучше понимать механизмы, ответственные за движение жидкостей в микроканалах. Это нужно для разработки устройств, к которым относят биочипы для анализа ДНК, устройства для сепарации клеток, анализа белков и других биомолекул, тестирования лекарственных препаратов, а также для создания химических микрореакторов с каналами диаметром менее 1 мм. Их используют в фармацевтике для эффективного синтеза химических соединений и проведения сложных реакций.
Основная проблема течений на малых масштабах — высокое сопротивление твердых стенок, которое затрудняет движение жидкости. Одна из задач состоит в повышении скорости потока и оптимизации ее перемешивания. Обычно его осуществляют механически с помощью насосов, что называется вынужденной конвекцией. Однако с точки зрения энерго- и ресурсосбережения рациональнее использовать естественную, когда движение жидкости вызвано неоднородностью ее плотности. Воздействие внешней силы приводит ее в движение, способствует интенсивному перемешиванию и ускоряет протекание химических реакций.
Одно из наиболее удобных для исследования устройств — ячейка Хеле-Шоу, заполненный жидкостью тонкий зазор между двумя параллельными пластинами. Она позволяет использовать развитые оптические методы наблюдения за течением в эксперименте и упростить процедуру решения уравнений. Принципиальную роль для технологических устройств играет возможность управления течением, поэтому в качестве источника энергии для поддержания конвекции используются силы инерции, действующие на жидкость во вращающемся реакторе Хеле-Шоу. В отличие от силы тяжести они легко контролируются в эксперименте.
Согласно устоявшейся теории сила Кориолиса (одна из сил, возникающих во вращающихся системах) может существовать только в трехмерных течениях жидкости. Ученые Пермского Политеха опровергли это утверждение, показав, что она вносит свой вклад и в двумерные течения, если жидкость неоднородна по плотности. Влияние данной силы наблюдалось в экспериментах с вращением системы растворов в реакторе Хеле-Шоу. Однако использованная ранее теоретическая модель некорректно описывала процесс в таких условиях и нуждалась в развитии.
— Ранее считалось, что сила Кориолиса не вносит вклада в двумерную конвекцию. Учет нового эффекта делает предсказания модели корректными. Во-первых, точнее определяются условия начала конвекции. Во-вторых, особенности течений, возникающие только при действии силы Кориолиса, теперь имеют теоретическое объяснение и могут быть смоделированы в численном эксперименте. Например, ранее теория не предсказывала наличие спиральности у течений Хеле-Шоу, хотя это явление наблюдалось в эксперименте, — комментирует Дмитрий Брацун, заведующий кафедрой прикладной физики ПНИПУ, доктор физико-математических наук.
— Еще одно важное свойство эффекта Кориолиса заключается в его стабилизирующем влиянии на жидкость. Нам удалось выяснить, что при наличии этой силы возбуждение конвекции замедляется, а уже развитое движение дольше остается упорядоченным во времени и пространстве. Сценарий, по которому система идет от равновесного состояния к хаотическому, существенно отличается от предсказанного ранее. Можно сказать, мы исправили фундаментальную неточность в уравнениях двумерной конвекции, что имеет важные следствия как для самой теории, так и для устройств, осуществляющих управление течениями на малых масштабах, — дополняет Владимир Уточкин, ассистент кафедры прикладной физики ПНИПУ.
Исследование ученых ПНИПУ позволило выявить фактор, влияющий на движение жидкости в двумерных полостях. Результаты применимы в медицине, фармацевтике и других отраслях, связанных с микрожидкостными устройствами.